
CryptSDLC: Embedding Cryptographic Engineering into Secure
Software Development Lifecycle

ABSTRACT
Application development for the cloud is already challenging be-
cause of the complexity caused by the ubiquitous, interconnected,
and scalable nature of the cloud paradigm. But when modern se-
cure and privacy aware cloud applications require the integration
of cryptographic algorithms, developers even need to face addi-
tional challenges: An incorrect application may not only lead to a
loss of the intended strong security properties but may also open
up additional loopholes for potential breaches some time in the
near or far future. To avoid these pitfalls and to achieve dependable
security and privacy by design, cryptography needs to be system-
atically designed into the software, and from scratch. We present a
system architecture providing a practical abstraction for the many
specialists involved in such a development process, plus a suitable
cryptographic software development life cycle methodology on top
of the architecture. The methodology is complemented with addi-
tional tools supporting structured inter–domain communication
and thus the generation of consistent results: cloud security and
privacy patterns, and modelling of cloud service level agreements.
We conclude with an assessment of the use of the Cryptographic
Software Design Life Cycle (CryptSDLC) in a EU research project.

CCS CONCEPTS
• Security and privacy → Software security engineering; •
Software and its engineering→ Software developmentmeth-
ods;

KEYWORDS
Software engineering, Software design life cycle, Cryptography,
Security by design, Privacy by design, Data protection by design
and default

ACM Reference Format:
. 2018. CryptSDLC: Embedding Cryptographic Engineering into Secure
Software Development Lifecycle. In Proceedings of ARES (ARES’18). ACM,
New York, NY, USA, 8 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Developing secure software is one of the most challenging tasks
in software engineering and it is ever becoming more important.
Novel technologies like cloud computing and Internet of Things are

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ARES’18, August 2018, Hamburg, Germany
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

leading to highly distributed interconnected systems communicat-
ing over the Internet—thus adding further problems to the so–called
trinity of trouble: connectedness, complexity, and extensibility.

Security by design is the new paradigm for developing secure
software. It can basically be considered as a set of best practices
embedded into a software development lifecycle (SDLC). It is a
secure software development lifecycle (SSDLC) which integrates
security considerations into all phases of the development process.

Data protection by design and default is another related concept1
which needs to be put into practice. In a very informal way we could
say that data protection by design covers the security of personal
data2. Obviously many concepts from secure application design–
e.g. as regards confidentiality of data, or hardening of information
and communication technology systems–may be applied in privacy
aware systems. Other cryptographic technologies, e.g. anonymous
authentication, or redaction of digitally signed documents for data
minimization purposes can be applied in a similar framework as
other security technologies that do not fulfill privacy functions for
the protection of personal data in the first place.

Yet both security and privacy need to be integrated from the
very beginning into a software development process [23]. Many
of the problems often encountered in the development phase can
be mitigated on the architectural level if security aspects are al-
ready considered in the design phase. This is specifically true when
cryptography is used.

Cryptography can help on many levels to efficiently and ef-
fectively protect data and information systems. It is a preventive
technology that needs to be carefully designed into the system
from scratch to unleash its full potential. When cryptography is not
correctly applied it may not only lose its protective properties but
even introduce new vulnerabilities. Despite the importance of this
topic we did not find adequate treatment in literature. In this paper
we will explain why cryptography needs to be considered system-
atically during the entire lifecycle of the software development
process—and specifically during the design phase—and present a
first conceptual approach how this can be practically achieved. To
the best of our knowledge, this is the first systematic and holistic
approach aiming at an integration of cryptographic engineering with
a secure software development process.

In section 2 we review the state-of-the-art and identify chal-
lenges we encountered during our work in development projects
involving a broad number of specialists from different disciplines.
In section 3 we introduce a system architecture providing a tangible
abstraction for the multiple disciplines involved in a cryptographic

1’Data protection by design and by default’, as it is defined in
the EU GDPR [11], Art. 25 (cf. http://www.privacy-regulation.eu/en/
article-25-data-protection-by-design-and-by-default-GDPR.htm (accessed May 2018)
is the more present term for what is still colloquially referred to as ’information
privacy’, or in US legal environment ’protection of personally identifiable information
(PII)’
2Art. 4, Par. (1), EU GDPR[11] defines personal data meaning “any information relating
to an identified or identifiable natural person (’data subject’)”

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
http://www.privacy-regulation.eu/en/article-25-data-protection-by-design-and-by-default-GDPR.htm
http://www.privacy-regulation.eu/en/article-25-data-protection-by-design-and-by-default-GDPR.htm


ARES’18, August 2018, Hamburg, Germany

development process. The architecture is accompanied by the novel
methodology for secure service design and development CryptS-
DLC (section 4). Finally, methods for inter domain communication
based on cloud security and privacy patterns and capabilities and SLA
modeling are presented in section 5. Finally (section 6) we give a
critical assessment of our practical experience with the CryptSDLC.

2 CHALLENGES
The necessity of integrated secure software development has been
established and several approaches were proposed. Nevertheless,
methodologies still do not sufficiently cover the practical adapta-
tion and integration of cryptographic primitives and protocols in
software development life cycles. In the following we present a
state-of-the-art and identify additional supporting principles that
we intend to address with our newly proposed CryptSDLC.

2.1 State of the art and related work
The importance of preventing software security defects is now
widely accepted. The first books about these topics appeared around
2001 [24]. Software security best practices involve thinking about
security early in the development life cycle and embed security
consideration in all phases of the life cycle. Surveys of whole life
cycle practices and life cycle phase-specific practices can be found
in [8], [18], [24] and [30].

Also industry is catching up fast to cope with the new situation.
Microsoft has carried out a noteworthy effort and developed The
Security Development Lifecycle (SDL) [15]. SDL is one of the indus-
try standards today, because it is open and free tool support exists
for some steps in the process.

Furthermore, theOpenWebApplication Security Project (OWASP)
community developed the Software Assurance Maturity Model
(SAMM) [10] which is a more lightweight analog to the Microsoft
approach. SAMM helps organizations assess, formulate, and imple-
ment a strategy for software security, that can be integrated into
their existing Software Development Lifecycle (SDLC).

Besides industry and community approaches taking momentum,
standardization bodies also started efforts to tackle the problem in
a systematic way. ISO/IEC 27034 offers guidance on information
security to those specifying, designing and programming or procur-
ing, implementing and using application systems, in other words
business and IT managers, developers and auditors, and ultimately
the end-users of ICT. The aim is to ensure that computer applica-
tions deliver the desired or necessary level of security in support
of the organization’s Information Security Management System,
adequately addressing many ICT security risks.3 Microsoft also has
declared conformance with ISO 27034-1, the first part of a relatively
new international standard for secure software development.

2.2 Towards Cryptographic Engineering
In summary, comprehensive approaches to secure software de-
velopment exist but they do not explicitly cover the integration
of cryptographic engineering into the secure SDLC. Only little is
known about the incorporation of cryptographic engineering into
the processes developed, even though cryptographic solutions are
acknowledged as being important and versatile technical solutions
3http://www.iso27001security.com/html/27034.html, accessed May 2018.

to protect information assets. For example, in SDL the recommenda-
tions for use of cryptography4 are very basic and do not cover any
advanced primitives or protocols. By cryptographic engineering
we mean the selection, adaption, implementation, and roll-out of
cryptographic primitives in productive systems. This goes beyond
enabling known existing methods, like TLS on a communication
link between two back-end servers.

In support of this rationale, the very recent results in [25] clearly
indicate the difficulties in developing cryptographic applications
(by analyzing software development approaches to password stor-
age). The most important outcome was, that developers think of
functionality first, before they think of security. Developers need to
be reminded of this topic before the start of a project. Even worse,
none of the produced solutions met current academic standards–
mainly because the they were not integrated with the frameworks
widely used in development.The same is true for other primitives
and protocols, e.g, as shown in [29].

Even if the engineering process does not involve a (re)design of
cryptographic algorithms, as in the case of using SSL or TLS–which
are based on existing cryptographic primitives and standardised
protocol descriptions–Google found the need to re-implement the
protocols as they were not content with the current implementa-
tions5. A first approach towards the integration of cryptographic
engineering has been presented in [2]. There are now also first
commercial products available, e.g. Cryptosense6. However, the
approach is very limited and does not cover the design phase of the
lifecycle, but only targets at the development phase.

2.3 Supporting principles
During development and practical application of the CryptSDLC we
identified several inhibitors and promoters of a successful integra-
tion of cryptographic protection into cloud services [22]. From the
promoters we derived three principles that need to be supported in
the cryptographic software design life cycle.

2.3.1 Cryptographic engineering needs to be closely coupled with
today’s flexible and agile development. Historically, cryptography
works in a reliable way for well confined, understood problems
and in static scenarios. Most prominently it was used to establish
secure channels over untrusted networks and to protect data at rest.
All these tasks have well defined security requirements which are
not supposed to change over time or per application. The same is
true for the underlying trust models. However, from the past we
learned that even such standard designs can miserably fail when
done in an ad-hoc fashion. An example is the wrong combination of
encryption (ENC) modes and message authentication codes (MAC)
leading to padding oracle attacks [19] which allowed breaking the
otherwise secure encryption scheme inside SSL. Thus cryptographic
engineering needs to be closely coupled with today’s flexible and
agile development.

4https://download.microsoft.com/download/6/3/A/63AFA3DF-BB84-4B38-8704-B27605B99DA7/
Microsoft%20SDL%20Cryptographic%20Recommendations.pdf, accessed May 2018.
5For Google’s BoringSSL effort see https://www.imperialviolet.org/2014/06/20/
boringssl.html and for Go a dedicated implementation exists as well see https:
//groups.google.com/forum/#!topic/golang-nuts/0za-R3wVaeQ, accessed May 2018.
6https://cryptosense.com/analyzer/, accessed April 2018

http://www.iso27001security.com/html/27034.html
https://download.microsoft.com/download/6/3/A/63AFA3DF-BB84-4B38-8704-B27605B99DA7/Microsoft%20SDL%20Cryptographic%20Recommendations.pdf
https://download.microsoft.com/download/6/3/A/63AFA3DF-BB84-4B38-8704-B27605B99DA7/Microsoft%20SDL%20Cryptographic%20Recommendations.pdf
https://www.imperialviolet.org/2014/06/20/boringssl.html
https://www.imperialviolet.org/2014/06/20/boringssl.html
https://groups.google.com/forum/#!topic/golang-nuts/0za-R3wVaeQ
https://groups.google.com/forum/#!topic/golang-nuts/0za-R3wVaeQ
https://cryptosense.com/analyzer/


CryptSDLC: Embedding Cryptographic Engineering into SSDLC ARES’18, August 2018, Hamburg, Germany

2.3.2 Cryptographic engineering starts from a deep understand-
ing of the cryptographic primitives. Since the turn of the millennium,
cryptographic research has developed a large body of primitives and
protocols providing the potential to add functionality and flexibility
for cloud applications over the entire data lifecycle (cf. e.g. [22] .
But engineering these advanced cryptographic functionalities into
software is a very complex task and requires deep cryptographic
expertise. And while contemporary secure software development
life cycles recommend the use of cryptography, only little actual
guidance exists on how secure adaption and secure integration can
be achieved in practice.

2.3.3 Cryptographic engineering requires interdisciplinary ex-
pertise and communication. Engineering advanced cryptographic
functionality into software systems requires expertise from different
fields: On the lowest level cryptographic expertise and the expertise
to actually securely implement the cryptography is needed. Often
these skill are not found in the same set of people, and interdis-
ciplinary collaborations among cryptographers and crypto devel-
opers are required. Protection requirements are usually coming
from service and application designers and need to be communi-
cated to cryptographers and crypto developers. On the other hand,
capabilities and potentials of cryptographic algoriths need to be
communicated to the higher level service and application designers.
Security experts overseeing the secure integration need to be active
on all levels of a development process.

3 ARCHITECTURE
The main goal of the CryptSDLC architecture is to support the
development process of cryptographic applications. It is a concep-
tual approach to structure and streamline typical tasks identified
in cryptographic engineering. The model helps to cope with the
complexity and interdisciplinary nature of cryptographic applica-
tion design. It is based on the experiences made in an EU research
project with people from very different disciplines involved, all
targeted at a single goal: the development of cloud services which
are secure by design and leverage feasible cryptography.

The development of the architecture was driven by two factors:
On one hand, we needed a tool to improve communication between
the experts of the different disciplines involved in our projects. On
the other hand, it was a basis for the development of the accompa-
nying methodology which relies on the communication structure
defined in the architecture with it’s layers and interfaces. Especially
the interface between cryptographic researchers and software ar-
chitects turned out to be essential to ensure that security properties
developed at the cryptographic layer can be transferred to cloud
applications.

In particular, the goals of the architecture are: incorporation of
cryptographically sound design methodologies; support adoption
by efficient and secure implementations of generic building blocks;
give guidance for use of cryptography in a developer friendly way;
reduce configuration and integration errors as far as possible with-
out limiting the flexibility; foster exploitation of results for all appli-
cation domains (horizontal technology); and enable fast adoption
for a large developer base.

3.1 Architecture Layers
The CryptSDLC architecture is shown in Figure 1 and comprises
four different layers, three of which are of major interest for this
document, namely: primitives, tools and services. Nevertheless, we
subsequently introduce all four and quickly present the main ideas
behind.

Primitives Layers. The lowest layer consists of cryptographic
primitives and protocols which represent basic cryptographic build-
ing blocks, e.g., signature schemes, or cryptographic protocols. They
typically provide very specific functionality which is defined by
the security goals achieved. Furthermore, the analysis and develop-
ment of cryptographic primitives is done by cryptographers with
strong mathematical background, ideally in a provable manner, i.e.,
by rigorous mathematical methods and models. The very special-
ized knowledge required for this work is not shared by software
developers.

In Figure 1 some of the cryptographic primitives covered in
the research project are shown which serve as an example in our
work. Note, research on the cryptographic layer is essential for
building cryptographically enhanced services in order to provide
the required functionality and efficiency for application usage. The
work conducted on the primitives layer typically aims at closing
the gaps derived in the requirements engineering process from use
cases and their services.

Tools Layer. The second layer is denoted as tools layer. Tools are
a concept introduced by CryptSDLC to communicate techniques to
software developers and architects in an more accessible way. They
provide higher level functionality as a combination of primitives
which serve a particular purpose and also come with an accom-
panying implementation in form of, e.g., software libraries. The
design of tools is still based on rigorous cryptographic models and
ideally provides provable security for realistic adversary models.
For software developers the tools layer must provide all documen-
tation to use and integrate the tool libraries correctly into services.
In should translate all essential information from the mathematical
world to a more accessible form for practitioners.

Service Layer. Cloud computing is radically changing the way we
are consuming IT resources but also influencing the way software is
built and deployed. Although not really new, services and microser-
vices based design is becoming a dominant pattern in industry [26]
to increase flexibility and reuse of components. Away from mono-
lithic architectures, we are facing a shift towards service oriented
architectures (SOA) where services can be flexibly interconnected
and deployed in distributed fashion spreading traditional perime-
ters. In CryptSDLC we acknowledge this trend and its benefits by
the definition of the service layer which is extremely useful in the
context of cryptographic engineering to further encapsulate more
complex tasks from application developers.

A CryptSDLC service can be seen as a customization of a par-
ticular tool for one specific application—thus we call a service an
instantiation of a tool. Thus, a service is a way to deliver the tool
to system and application developers, the users of the tools, in an
preconfigured and accessible form. They will be able to integrate
the services without deeper understanding of tools and primitives
and ideally without even being an IT security expert. However,



ARES’18, August 2018, Hamburg, Germany

Primitives

Tools

Services

Applications

SSS

ABCRDC PIR

MSS

FSS

ZKP

Secure Object
Storage

Flexible
Authentication with
Selective Disclosure

Data
Sharing

Secure
Archiving

Selective
Authentic
Exchange

Privacy
Enhancing

IDM

Smart City eGovernment

C
ry

pt
SD

LC
A
rt
ifa

ct
s

Cryptographic
Schemes,
Standards

Specification,
Recommendations,
Implementation

Service specification
and guidelines,
SLAs and Capabilites
Software

C
ry

pt
SD

LC
St
ak
eh

ol
de

rs

Cryptographers

Crypto developers,
Security experts

Service developers,
Middleware arch.,
Security experts

App. developers,
Cloud architects

hi
gh

C
ry
pt
og

ra
ph

ic
kn

ow
le
dg

e
re
qu

ri
ed

lo
w

hi
gh

In
te
rf
ac
e
co
m
pl
ex
ity

lo
w

hi
gh

Fl
ex
ib
ili
ty

of
so
ft
w
ar
e
co
m
po

ne
nt
s

lo
w

lo
w

A
pp

lic
at
io
n
kn

ow
le
dg

e
hi
gh

P
ro

ve
Se

cu
ri
ty

D
ep

lo
y

To
ol

Ex
tr

ac
t

C
ap

ab
ili
ti
es

Service
E
xist

Fulfills
R
eq. U

se
E
xi
st
in
g

Se
rv
ic
e

ToolE
xist

P
rovides

Feat. U
se

E
xi
st
in
g

To
ol

D
erive

R
equirem

ents
Translate
R
equirem

ents
M

ap
to

M
odel

Architecture

Figure 1: The CryptSDLC Architecture and Methodology overview.

because the services are built atop sound cryptographic concepts,
i.e., out of the CryptSDLC tools, they provide strong security guar-
antees and are built the right way. This approach is different to the
broadly applied ad-hoc integration of cryptographic solutions into
applications and helps to avoid common pitfalls in system design
and implementation.

Application Layer. The application layer contains the applica-
tions targeted at real end users. Modern applications try to leverage
the idea of service oriented architectures to support scalability and
elasticity through modularization. This gives the required freedom
in deployment needed in modern cloud environment, be it private,
public or hybrid cloud settings. The concept of CryptSDLC follows
this trend and the services based approach are a modern way to
expose security functionality to cloud architects and application
developers.

3.2 Closing the Gaps
The structure of the architecture was designed in order to mitigate
all three gaps identified earlier: The architecture incorporates a
set of suitable cryptographic primitives first into tools, then into
services and finally into an application. It describes how to add
security functionality at the lowest possible layer. This positively
impacts the security of the application and thus bridges the 1st gap
by coupling the software development process with cryptographic
engineering as well as highlighting the need for a deep crypto-
graphic understanding (2nd gap). We believe that if the security
functionality is not addressed at the lower layer, but addressed by
alternative security controls on higher layers, it introduces addi-
tional overhead in complexity and administration, which can also
lower the security of the system.

Moreover, the architecture separates certain areas of expertise
or describes the need for cooperation and communication (3rd gap)
among different disciplines: For example cryptographers and soft-
ware developers work together to code CryptSDLC’s tools. This
is clearly highlighted by the architecture. Those tools encapsulate
the inner workings of the cryptographic functionality and offer a
defined software interface to a set of specifically tailored algorithms
serving a dedicated purpose. Having the tools layer, a service can
be built in less time by less specialized software developers, espe-
cially it needs only a limited level of knowledge in cryptography.
Thus, building cryptographic services out of those tools becomes
much easier as it requires much less cryptographic knowledge than
without this intermediate step. With tools being the software or
hardware that computes the cryptographic algorithm or protocol,
the tool is much more flexible and its many more options can be
customized to provide several services. Then each service has many
potential applications in which it can be re-used to targeted cus-
tomers’ and business’ domain-specific security or data-protection
requirements. This again addresses the 1st gap as it allows for an
agile and flexible re-use of cryptography-based security functional-
ity and allows formal modelling to the highest level possible with
reasonable effort.

4 CRYPTSDLC: A NEW DEVELOPMENT
METHODOLOGY

In the following we present a first version of our methodology
specifically covering the cryptographic engineering aspects in SS-
DLCs. It is called Cryptographic Software Development Lifecycle
(CryptSDLC) and defines a way to traverse the layers in the archi-
tecture. It can be seen as an extension to SSDLC and shall assist



CryptSDLC: Embedding Cryptographic Engineering into SSDLC ARES’18, August 2018, Hamburg, Germany

software developers to get cryptographic usage right in their appli-
cations. As a major contribution it standardizes the steps necessary
when going from one layer to the other and aligns them to the
general phases of classical SSDLC models.

The major steps of CryptSDLC have already been included in
Figure 1 and are marked by the big white arrows in the middle. The
major steps are Derive, Translate and Map from top to bottom and
Prove, Deploy and Extract from bottom to top. TheCryptSDLC can be
used to extend conventional software development lifecycles, like
the ones presented in section 2. It basically introduces an additional
dimension coping with cryptographic engineering and has a strong
focus in the requirements and design phase. However, also the
development and deployment phases are of importance but omitted
in this work for space reasons.

In the requirements phase the following steps give a top-down
approach for cryptographic requirements gathering:
• Derive Requirements: Based on the requirements gathered we
derive the most important ones for the core cryptographic service
we want to use or build.

• Translate Requirements: The requirements are translated into
a more formal language which can be understood and used by
cryptographers to start their research and design.

• Map to Model: To trigger research on primitives and protocols
the identified gaps on the tools layer have to be mapped to re-
search goals in cryptography for specific primitives or protocols.
In the design and development phases we use a bottom-up ap-

proach and define the following steps to go up in the CryptSDLC
architecture:
• Prove Security: Tool should be built by formal methods used in
cryptography as good as possible. The goal is to support features
by the definition of provably secure protocols.

• Deploy Tool: The components of a tool are arranged in the
service architecture in a way such that by reasoning it gets clear
how the features of the tool translate the security requirements
fulfilled by the service.

• Extract Capabilities: Based on the features of the tool and the
deployment model specific service properties called capabilities
can be extracted. They are exposed as an additional property to
the upper application layer.
Although we define this holistic approach going down to the

lowest layer, the reuse of existing work is a major goal of the
whole process. In all layers the step down to lower layers is only
performed if the requirements cannot be already achieved with
available solutions by the following policy:
• Application layer: Only develop a dedicated service if require-
ments cannot be fulfilled otherwise.

• Service layer: If possible, develop the new service on the basis of
existing templates and just add missing features supported by an
underlying tool.

• Tool layer: Only develop a new tool if given tools cannot provide
the required features or an existing tool cannot be extended with
the required feature.

• Primitive layer: Always do a state of the art analysis if missing
features can be provided by existing research results or spec-
ify the gap if not. Only then trigger research activities on the
primitive layer.

The top down path is basically a very detailed requirements
analysis process decomposing and breaking down the various re-
quirements down to a level where cryptographers can work with
them. The bottom up path then focus on the composition of up-
per layer components based on the functionalities available in the
lower layers. The full cycle does not always to be walked through.
In fact, one should only go down one layer when exiting solutions
do not fulfill the requirements at the given level and need some
modifications to provide the required features. CryptSDLC has been
implemented and successfully tested within a research project.

However, in the remaining we will focus on the analysis of the
very new steps "Proof" and "Deploy" in this section, which are new
steps to be considered in secure development cycles during the
design phase. We will also not look into testing and deployment
phases, which is part of future work.

4.1 Proof: Compose primitives into tools
Due to the cryptographic nature of the tools it is of prime impor-
tance to have a profound analysis and sound security proofs for
them. In the following we shortly discuss the two main approaches
being used in cryptography for composing primitives to tools.

Universal Composability is a very rigorous approach used to
overcome the problem of protocols being analyzed as standalone
applications. It enables the construction of security models where
security is retained under protocol composition which is the most
generic result to achieve. Multiple instances of the protocols can run
concurrently or even interact with each other without violating the
security model. Various frameworks can be found in the literature,
e.g., Canetti, Hirt and Maurer, Pfitzmann et al., and Küsters et
al. [5–7, 20]. In CryptSDLC the advantages of constructing tools in
universal composability frameworks is that they can be combined
and the security of the combination follows. However, it comes
with a number of drawbacks, e.g. sometimes impractically high
computational overheads. Thus, designing UC-secure tools requires
effort on the primitives level in order to get efficient building blocks
that can be composed in a modular way. Many issues are currently
getting addressed in academic research, see for example [4], so we
recommend it for future use or simpler protocols.

Direct Construction of High-Level Primitives is the other main
approach for constructing complex primitives and tools and prov-
ing them secure are direct (or ad hoc) constructions. That is, one
defines a set of experiments covering the security properties one
wants to realize with the given functionality, e.g., unforgeability
of signatures, confidentiality against a defined class of adversaries
for encryption, etc. One then specifies concrete instantiations of
algorithms and proves that those algorithms indeed satisfy those
security definitions. The main advantage of ad hoc constructions is
an increased efficiency compared to universally composable con-
structions, and sometimes the only way to proof security when UC
approaches fail. However, one of the most fundamental drawbacks
is that security is typically not retained under concurrent composi-
tion and security proofs tend to be monolithic and non-modular.

A general aspect of the Proof phase is, that although techniques
from provable security are used, there is always an abstraction step
involved on how the environment is modeled. Thus, the security
models used can not cover all aspects and existing gaps and their



ARES’18, August 2018, Hamburg, Germany

implications have to be communicated to the software developer.
It is important that it’s clear to the users of the tool under which
conditions the security properties hold and how they map to real
world scenarios. Examples for such assumptions are parties which
are considered honest-but-curious or synchronous network mod-
els which need additional security controls on higher levels to be
assured in specific use cases.

Finally, the implementation of the tool has to be considered dur-
ing this phase. Providing secure and trustworthy implementations
of core components which enable the very features defined in the
tool specification is essential for the next step. The development
of reliable core components in software and hardware is a very
challenging task and requires a lot of experience. The developers
must be able to understand the theoretical side, but also be aware of
implementation challenges from real world settings, e.g., how to im-
plement side channel resistant code. Although current approaches
mainly follow a heuristic approach, for the future we envisage the
ability to proof the correctness of code with methods from formal
verification to establish a so called trusted code base (TCB) as in
[14].

4.2 Deploy: Compose tools into services
The tool abstraction we have introduced in CryptSDLC is a key
concept which greatly simplifies the development of secure services
and should also provide better results in terms of secure design.
It is also intended to maximizes the reuse of existing work on the
cryptographic layer. The process of generating a service out of a
tool has to cover all additional steps not covered by the tools but
needed for real world applications. In particular, the following steps
are necessary to design a service out of a tool:

(1) Specify a service & deployment plan incl. stakeholders
(2) Identify major components in the service and sketch their main

functionality
(3) Embed tool components within service components
(4) Map requirements to features provided by the tool
(5) Generate a software architecture and specification
(6) Implement software development lifecycles with integrated se-

curity
(7) Propose operational guidelines like an assurance model to sup-

port production phase

Using the proposed methodology should lead to services which
are secure by design and built on cryptographically sound compo-
sition of primitives and protocols, i.e., in a provable way in the best
case. Especially, after embedding the components of the tool into the
components of the service—the deployment step—and considering
all additional guidelines specified by the tool, e.g. “communication
between server and dealer must be private and authentic”, we can
reason about the service to be a secure instantiation of the tool.

Naturally, when building a piece of software there are additional
aspects to consider apart from using correct algorithms, i.e., cor-
rect cryptography in our case. It faces all challenges known from
secure software development and all state-of-the-art processes and
methodologies for SDL shall also be applied during the CryptS-
DLC service development. Tools also offer an additional benefit:
increased development speed and improved security through the

secure and efficient software software implementations of core
cryptographic functions provided with the tools.

Nevertheless, a complete service is comprised of many dedicated
software components running within the cloud infrastructures.
Even worse, operational aspects have to be considered and defined
to fully support a cloud service life cycle thus mandating integration
into operational processes. In summary, although the tool concept
greatly facilitates the service development process, all SDL doc-
umentation must be heeded to foster quick adoption of project
results on the service level.

4.3 Extract: Advertise a service’s impact
A Service Capability in CryptSDLC is a security & privacy relevant
property that is of importance for the application domain of the
service and that can be described in a specific and precise language,
and additionally in a formal, machine readable language. Service
capabilities can and should thus be used to advertise towards the
application level what the service is able to provide. They shall
facilitate comparisons among services with respect to specific prop-
erties as well as guide the communication of experts from different
fields (see Sec. 5.1). Thus, they should highlight positive impacts, e.g.
‘service achieves confidentially of stored data’, as well as additional
overheads, e.g. ‘service requires twice as much computations as
a regular asymmetric integrity protection’. They should be best
contractually agreed upon, i.e. be part of a service level agreement
(SLA), see Sec. 5.3.

5 INTER STAKEHOLDER COMMUNICATION
As shown in Fig. 1, the four tiers of the architecture span across do-
mains with different stakeholders involved (i.e. the cryptographers,
crypto developers, service developers, application developers etc).
We provide three communication tools to close communication
gaps between experts involved on the different layers:

• Capabilities: A service capability is a security & privacy relevant
property that is of importance for the application domain of
the service and that can be described in a precise language—at
best a machine readable language in order to enable compar-
isons among services with respect to specific properties. With
an English language description this forms a dictionary for com-
munication among the experts for properties like ‘availability’ or
‘confidentiality of data towards the storage provider’. The chal-
lenge is to have them remain precise enough to still capture only
the cryptographically proven security claim while still abstractly
communicate enhancements towards the service consumers.

• Patterns: In order to better understand which services to incor-
porate into an application we propose cloud security and privacy
patterns and human computer interaction (HCI) patterns. Each
pattern describes the problem a certain service can solve and
how and with which implications that can be achieved.

• Service Level Agreements: Finally, we advertise the positive im-
pacts of involving cryptographic primitives in applications, but
also their overheads, on the level of services as service level agree-
ments (SLAs). We base them around the capabilities—and stan-
dardised property descriptions—allowing application users, e.g.



CryptSDLC: Embedding Cryptographic Engineering into SSDLC ARES’18, August 2018, Hamburg, Germany

cloud service customers, to understand them without requir-
ing the full knowledge of the cryptographer—who designed and
established the security of a cryptographic primitive.

These communication tools bridge existing gaps and support the cre-
ation of sound cryptographically-enhanced cloud services concisely
catering for the end users’ security and data protection demands.

5.1 Service Capabilities
We identified early that the involved stakeholders do not always
speak a common language. Let us recall one extreme example that
occurred in the research project: In cryptography—in the domain of
information privacy—there were publications that achieved a ’hid-
ing property’ the researchers called ’transparency’, thus redefining
a name used in the legal domain with an entirely different, if not op-
posite, meaning (i.e. allowing successful inspection of all details)7.
With a precise definition of a property that is either required or
achieved, the CryptSDLC workflow can be initiated either top-down
or bottom-up. For example in the bottom-up case, a Service Capa-
bility can be used to advertise a service’s cryptographically-proven
data-protection increase as an added value to the market more eas-
ily. In order to keep the linkage between the actual achievement
and the actual tools and thus the cryptographic primitive’s security
gains, the service capability is not just stated statically, but a model
is provided that derives such a capability from the configuration
parameters of their cryptographic software libraries – called tool in
the architecture. This model encapsulates then the transformation
along the bottom-up steps described CryptSDLC. Furthermore, one
can model the transformation process in a top-down direction: As
a result one is able to adapt the configuration and inner workings
of the cryptographic underpinnings of a service swiftly to address
changing customer demands. Together with a model the service
capability holistically captures the relation between cryptographic
parameters—lowest-level in the CryptSDLC architecture—and high-
level customer requirements.

5.2 Design Patterns
In order to support the communication within the layered devel-
opment process governed by CryptSDLC, as well as to support the
diffusion of novel cryptographic paradigms and capabilities among
prospective providers and end users we propose cloud security
and privacy patterns and HCI–human computer interaction–patterns.
Both cloud security and privacy patterns and HCI patterns are used
to codify expert knowledge and requirements within a specific
scope in a way that the information remains accessible across do-
mains of involved actors. The main idea is that a design pattern
shall “describe(s) a problem which occurs over and over again (...)
and then describes the core of the solution to that problem, in such
a way that you can use this solution a million times over (. . . )” [1].
This is done by describing the (empirical) background of the pat-
tern, i.e. the “problem”, and giving instructions for the “solution”
in natural language in a framework of categories.

The concept was invented in Berkeley, CA., in the 1970s for
application in architectural design [1] and has later on been mod-
ified for application in software architecture in the 1990s when
7See for example the cryptographic adjustments made by Brzuska et al. [3] following
the legal discussion in Pöhls et al. [27]

object oriented design and re-usability required efficient commu-
nication of complex issues across different domains of involved
people [13]. Later on, the concept was used for security and privacy
patterns [9, 28], as well as for human computer interaction aspects
in HCI patterns [12][21]. Since several years, there exist collections
and catalogues of cloud security and privacy patterns specifically
for modelling threats and solutions in the cloud context.

In the research project we have proposed a set of nine cloud
security and privacy patterns8covering approximately the cases for
which we intended to provide secure implementations by project
end. We used these original patterns as common reference and com-
munication means between tools developers, service developers,
and application developers in the actual process of developing the
architecture and the CryptSDLC method.

5.3 SLA Modelling
With service capabilities describing already properties of inter-
est it was interesting to map those security and data-protection-
enhancing cryptographically supported properties into the formal
agreements that govern the relation between the upper two layers
of the CryptSDLC architecture: Service Level Agreements (SLAs)
between applications and services. Like service capabilities SLAs
are the interface by which services are advertised and they shall
facilitate the comparison between similar offerings. Not surpris-
ingly for the cloud services an internationally agreed set of terms is
becoming an ISO standard, i.e. ISO/IEC 19086 [16]. There is also a
subpart of the standardised SLA component that deal with security
and privacy9. To give a concrete example, there is the suggestion to
have an SLA component that describes the ‘Cryptographic controls
for data at rest’ in ISO/IEC 19086-4. The standardised component
covers “[...] the cryptographic controls available for data at rest
associated with the covered services. Note: These controls provide
for securing data with respect to confidentiality and integrity, while
being stored in a covered service. [...]” [17]. As shown in this case
the SLA’s contents can be mapped onto one of the previously men-
tioned service capability and by that the correct cryptographically
enhanced service can be chosen. The idea is that the SLAwill further
denote which cryptographic algorithms and security parameters
are used, such that instead of void marketing clauses of “banking
grade encryption” it would be common in the market to name the
algorithm, e.g. ‘3DES’10. Thus, SLA’s facilitate the communication
of the services towards the higher layers of applications and finally
also the end-consumers, e.g. humans using the applications.

6 CONCLUSIONS
In this work we summarized the problems encountered in crypto-
graphic engineering and proposed a first solution towards a sys-
tematic integration into a secure SDLC. The proposed CryptSDLC
methodology addresses communication issues between different
stakeholders needed to interweave the development of crypto-
graphic solutions as foundations for secure applications, offering
data-protection by design and default. The goal of the current work

8Will be cited in de-anonymized paper todo
9Privacy in the sense of protection of personal data if translated from international to
EU GDPR ‘language’
10This is indeed in many banking systems, e.g. banking cards, a still used algorithm



ARES’18, August 2018, Hamburg, Germany

is to give software developers access to advanced cryptographic
solutions and to reduce potential error sources for software devel-
opers integrating cryptographic functionality in their design.

The presented approach was developed and successfully tested in
a large EU research project which had all relevant stakeholders on
board. Although the feasibility of the approach was demonstrated in
the field of cloud computing, it can be considered generic enough
to become suitable for modern application design also in other
paradigms.

This is the first step towards a full-fledged integration of crypto-
graphic engineering in a secure software design life cycle. In the
current version of CryptSDLC documentation and software arti-
facts are mainly defined for the requirements and development
phases. A first step was done also to cope with the deployment
phase, however, more work needs be done into this direction as
well as towards a tighter automated toolchain integration.

Additional work is required to further improve the handling of
cryptographic topics. Standardisation of cryptographic primitives
and their properties needs to be advanced (to have a precise lan-
guage as a common denominator). One particular problem is that
access to cryptographic expertise is only available in large compa-
nies or specialized departments of universities. Typically software
developers only have limited access to this cryptographic know-
how within their environment. However, if tool level modifications
are necessary it is inevitable to involve this expertise, and if not
internally available, it should be contracted for limited time.

To avoid several of these problems, we envisage a community
approach based on open technologies and information sharing.
Ideally, relevant information about tools and services is collected
in a public repository providing software developers easy access to
state-of-the-art tools and services, as well as to academic knowledge.
This can be the contact point where the cryptography community
and the security and software development experts can exchange
their knowledge. The platform could work on similar principles as
bettercrypto.org, which helps IT administrators without in-depth
knowledge to securely configure their systems.

REFERENCES
[1] Christopher Alexander, Sara Ishikawa, and Murray Silverstein. 1977. A Pattern

Language: Towns, Buildings, Construction. Oxford University Press.
[2] Steven Arzt, Sarah Nadi, Karim Ali, Eric Bodden, Sebastian Erdweg, and Mira

Mezini. 2015. Towards secure integration of cryptographic software. In 2015
ACM International Symposium on New Ideas, New Paradigms, and Reflections on
Programming and Software (Onward!) - Onward! 2015. ACM Press, New York, New
York, USA, 1–13. https://doi.org/10.1145/2814228.2814229

[3] Christina Brzuska, Henrich C. Pöhls, and Kai Samelin. 2012. Non-Interactive
Public Accountability for Sanitizable Signatures. In Revised Selected Papers of Eu-
ropean PKI Workshop: Research and Applications (EuroPKI 2012) (LNCS), Vol. 7868.
Springer, 178–193. http://dx.doi.org/10.1007/978-3-642-40012-4_12

[4] Jan Camenisch, Robert R. Enderlein, Stephan Krenn, Ralf Küsters, and Daniel
Rausch. 2016. Universal Composition with Responsive Environments. IACR
Cryptology ePrint Archive 2016 (2016), 34. http://eprint.iacr.org/2016/034

[5] Ran Canetti. 2001. Universally Composable Security: A New Paradigm for Cryp-
tographic Protocols. In 42nd Annual Symposium on Foundations of Computer
Science, FOCS 2001. IEEE Computer Society, 136–145.

[6] Ran Canetti, Ling Cheung, Dilsun Kirli Kaynar, Moses Liskov, Nancy A. Lynch,
Olivier Pereira, and Roberto Segala. 2006. Time-Bounded Task-PIOAs: A Frame-
work for Analyzing Security Protocols. In Distributed Computing, 20th Interna-
tional Symposium, DISC 2006 (Lecture Notes in Computer Science), Shlomi Dolev
(Ed.), Vol. 4167. Springer, 238–253.

[7] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. 2007. Universally
Composable Security with Global Setup. In Theory of Cryptography, 4th Theory
of Cryptography Conference, TCC 2007 (Lecture Notes in Computer Science), Salil P.

Vadhan (Ed.), Vol. 4392. Springer, 61–85.
[8] Noopur Davis, Watts Humphrey, Samuel T. Redwine, Gerlinde Zibulski, and

Gary McGraw. 2004. Processes for producing secure software: Summary of US
national Cybersecurity Summit subgroup report. IEEE Security and Privacy 2, 3
(may 2004), 18–25. https://doi.org/10.1109/MSP.2004.21

[9] Nick Doty and Mohit Gupta. 2013. Privacy Design Patterns and Anti-Patterns.
InWorkshop “A Turn for the Worse: Trustbusters for User Interfaces Workshop” at
SOUPS 2013 Newcastle, UK.

[10] Pravir. et al. Chandra. 2009. Software Assurance Maturity Model. (2009), 96 pages.
https://www.owasp.org/index.php/OWASP{_}SAMM{_}Project

[11] European Commission. 2016. Regulation (EU) 2016/679 of The European Parlia-
ment and of The Council, of 27 April 2016, on the protection of natural persons
with regard to the processing of personal data and on the free movement of such
data, and repealing Directive 95/46/EC (General Data Protection Regulation).
(2016). http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32016R0679
(online 20.7.2017).

[12] S. Fischer-Hübnner, C. Köffel, J.-S. Pettersson, P. Wolkerstorfer, C. Graf, and L.
Holtz. 2011. HCI Pattern Collection–Version 2. (2011). http://primelife.ercim.eu/
results/documents/111-413d (PrimeLife project).

[13] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1994. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley. ISBN
0-201-63361-2.

[14] Harry Halpin. 2018. A Roadmap for High Assurance Cryptography. Springer,
Cham, 83–91. https://doi.org/10.1007/978-3-319-75650-9_6

[15] Michael Howard and Steve. Lipner. 2006. The security development lifecycle : SDL,
a process for developing demonstrably more secure software. Microsoft Press.

[16] ISO. 2016. Information technology — Cloud computing — Service level agreement
(SLA) framework and technology — Part 1: Overview and concepts. Standard.
International Organization for Standardization, International Electrotechnical
Commission. Final Draft.

[17] ISO. 2017. Information technology — Cloud computing — Service level agreement
(SLA) framework — Part 4: Components of Security and of Protection of PII. Standard.
International Organization for Standardization, International Electrotechnical
Commission. Committee Draft.

[18] K R Jayaram and Aditya P Mathur. 2005. Software Engineering for Secure Software
- State of the Art: A Survey. Technical Report. Purdue University. 1–35 pages.
papers3://publication/uuid/f46d5eb9-0f9d-4b70-a8da-34c0c6b046ab

[19] Hugo Krawczyk. 2001. The order of encryption and authentication for protecting
communications (or: How secure is SSL?). In Annual International Cryptology
Conference. Springer, 310–331.

[20] Ralf Küsters and Max Tuengerthal. 2013. The IITM Model: a Simple and Expres-
sive Model for Universal Composability. IACR Cryptology ePrint Archive 2013
(2013), 25.

[21] Thomas Länger, Ala Alaqra, Simone Fischer Hübner, Erik Framner, John-Sören
Pettersson, and Katrin Riemer. 2018. HCI Patterns for Cryptographically Equipped
Cloud Services. Springer LNCS, Proceedings of the HCI International 2018 âĂŞ 20th
International Conference on Human-Computer Interaction, Las Vegas, USA (2018).

[22] Thomas Lorünser, Stephan Krenn, Christoph Striecks, and Thomas Länger. 2017.
Agile cryptographic solutions for the cloud. e & i Elektrotechnik und Information-
stechnik 134, 7 (nov 2017), 364–369. https://doi.org/10.1007/s00502-017-0519-x

[23] Gary McGraw. 2002. Building Secure Software: Better than Protecting Bad
Software. IEEE Software 19, 6 (nov 2002), 57–58. https://doi.org/10.1109/MS.
2002.1049391

[24] G. Mcgraw. 2004. Software security. IEEE Security & Privacy Magazine 2, 2 (mar
2004), 80–83. https://doi.org/10.1109/MSECP.2004.1281254

[25] Alena Naiakshina, Anastasia Danilova, Christian Tiefenau, Marco Herzog, Sergej
Dechand, and Matthew Smith. 2017. Why Do Developers Get Password Storage
Wrong? A Qualitative Usability Study. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security - CCS ’17. ACM Press,
New York, New York, USA, 311–328. https://doi.org/10.1145/3133956.3134082
arXiv:1708.08759

[26] Claus Pahl and Pooyan Jamshidi. 2016. Microservices: A Systematic Mapping
Study. (2016). https://doi.org/10.5220/0005785501370146

[27] Henrich C. Pöhls and Focke Höhne. 2011. The Role of Data Integrity in EU
Digital Signature Legislation - Achieving Statutory Trust for Sanitizable Signature
Schemes. In Revised Selected Papers from the 7th InternationalWorkshop on Security
and Trust Management (STM 2011) (LNCS), Vol. 7170. Springer, 175–192. http:
//dx.doi.org/10.1007/978-3-642-29963-6_13

[28] Markus Schumacher, Eduardo Fernandez-Buglioni, Duane Hybertson, Frank
Buschmann, and Peter Sommerlad. 2006. Security Patterns - Integrating Security
and Systems Engineering. John Wiley & Sons, Ltd. West Sussex, England.

[29] Osmanbey Uzunkol and Mehmet SabÄśr Kiraz. 2018. Still wrong use of pairings
in cryptography. Appl. Math. Comput. 333 (sep 2018), 467–479. https://doi.org/
10.1016/J.AMC.2018.03.062

[30] Rodolfo Villarroel, Eduardo Fernández-Medina, and Mario Piattini. 2005. Secure
information systems development - A survey and comparison. Computers and
Security 24, 4 (jun 2005), 308–321. https://doi.org/10.1016/j.cose.2004.09.011

bettercrypto.org
https://doi.org/10.1145/2814228.2814229
http://dx.doi.org/10.1007/978-3-642-40012-4_12
http://eprint.iacr.org/2016/034
https://doi.org/10.1109/MSP.2004.21
https://www.owasp.org/index.php/OWASP{_}SAMM{_}Project
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32016R0679
http://primelife.ercim.eu/results/documents/111-413d
http://primelife.ercim.eu/results/documents/111-413d
https://doi.org/10.1007/978-3-319-75650-9_6
papers3://publication/uuid/f46d5eb9-0f9d-4b70-a8da-34c0c6b046ab
https://doi.org/10.1007/s00502-017-0519-x
https://doi.org/10.1109/MS.2002.1049391
https://doi.org/10.1109/MS.2002.1049391
https://doi.org/10.1109/MSECP.2004.1281254
https://doi.org/10.1145/3133956.3134082
http://arxiv.org/abs/1708.08759
https://doi.org/10.5220/0005785501370146
http://dx.doi.org/10.1007/978-3-642-29963-6_13
http://dx.doi.org/10.1007/978-3-642-29963-6_13
https://doi.org/10.1016/J.AMC.2018.03.062
https://doi.org/10.1016/J.AMC.2018.03.062
https://doi.org/10.1016/j.cose.2004.09.011

	Abstract
	1 Introduction
	2 Challenges
	2.1 State of the art and related work
	2.2 Towards Cryptographic Engineering
	2.3 Supporting principles

	3 Architecture
	3.1 Architecture Layers
	3.2 Closing the Gaps

	4 CryptSDLC: A New Development Methodology
	4.1 Proof: Compose primitives into tools
	4.2 Deploy: Compose tools into services
	4.3 Extract: Advertise a service's impact

	5 Inter Stakeholder Communication
	5.1 Service Capabilities
	5.2 Design Patterns
	5.3 SLA Modelling

	6 Conclusions
	References

