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Executive Summary

In this report we present the specification of the secure object storage tool (SECOSTOR),
as it has been developed in the project. The tool comes with a clean architecture and easy
to use modules and interfaces. All components are specified in detail for implementation
and usage. All together this report specifies core functionality to build secure distributed
storage systems on the basis of secret sharing with many additional features not found in
comparable projects and solutions. With its rich feature set it supports many possibilities
for integration in cloud environments or similar infrastructures, hence, it is a useful tool
for service and application developers who want to leverage the technology.

The document contains a description of the overall SECOSTOR tool architecture as well as
of the three core software modules. One module is a comprehensive secret sharing library
written in Java and comprising various encoding algorithms. The second module also
implements secret sharing, but in JavaScript to target client side browser integration.The
third one provides a robust concurrency layer for distributed transaction management.
It has been developed in JavaScript (Node.js) and works seamlessly together with the
provided secret sharing library. Using state of the art web technologies for our tool enables
many options for integration and deployment, especially if public cloud providers are part
of the configuration.

The architecture and protocols defined are based on the cryptographic work done in WP4,
i.e. D4.1, D4.2 and D4.3. It also builds on the previous results of WP5, i.e., D5.1 and
D5.2. More information about the software implementation can be found in WP6 reports
and full documentation of the cloud services developed on the basis of the SECOSTOR in
reports of WP7. The capabilities of the tool will be demonstrated in two services (SAaaS
and DSaaS) which are going to be developed on the basis of the SECOSTOR tool and
which will be piloted in two use cases during the last phase of the project.
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1 Introduction

This section is intended to give an overview of the document, introduce the expected
content, explain the project context and give the reader some guidance for quick access to
the most relevant information.

1.1 Scope of the document

In this document we present the results on the design of Prismacloud’s secure object
storage tool SECOSTOR. The tool enables developers to build a more reliable and secure
storage environment for unstructured data compared to existing solutions by leveraging
a distributed (multi-cloud) architecture. The tool achieves this goal by fragmentation of
plaintext data and dispersal of the generated fragments over different storage locations
called servers. The tool concept follows the Prismacloud architecture shown in Figure 1
which has been introduced and explained in D7.5.

The SECOSTOR tool specification gives guidance for the design and provides components
to aid development of a storage service. It encapsulates cryptographic tasks as well as
data manipulation operations within relatively simple software modules that can be used
to build new or integrate existing storage services. This document makes the research
results in cryptography from WP4 accessible for software developers, such that they can
easily integrate them into their own software products. The different software modules
can be used and combined in various ways and optional features can be used to augment
the capabilities. This flexibility allows for the realization of many use cases in the context
of data storage with many possible deployment and trust models underneath.

This document delivers a final specification of the Prismacloud SECOSTOR tool and
its core components, as it is going to be used in the service development and piloting of
the project. The tool will be further extended in the last phase of the project, but only
on the conceptual level. However, partner AIT is maintaining the software components
and is planning to further extend its functionality even after the project’s end.

1.2 Relation to other project work

This report specifies the SECOSTOR tool, its overall tool architecture and the core com-
ponents developed in Prismacloud. It integrates major results from work done in WP4
with respect to secure storage, namely D4.1 Secret sharing protocols for various adversary
models and D4.2 Progress report on efficient sharing based storage protocols as well as
D4.3 Efficient sharing based protocols for mixed adversaries.

Furthermore, it builds on the state-of-the art analysis and first conceptual work done in
D5.1 Design of distributed storage systems without single-point-of-failure. A preliminary
version of the SECOSTOR tool was already delivered in D5.2 Progress report on architec-
tures for distributed storage in dynamic environments. This was done to test the structure
of the tool documentation and to provide a first version of the tool for service developers
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Figure 1: Prismacloud architecture.

to start their work and it is now superseded by this report.

The SECOSTOR tool is one of the five tools developed in the project comprising the
Prismacloud toolkit or toolbox. Therefore the full toolkit specification is comprised by
the following documents:

• D5.3 — SECOSTOR tool (this report, full title: Advanced architecture for dis-
tributed storage in dynamic environments)
• D5.4 — DATAPRIV tool (full title: Tools for encryption and tokenization tech-

niques)
• D5.7 — TOPOCERT tool (full title: Final report on privacy and anonymization

techniques)
• D5.9 — FLEXAUTH tool (full title: Analysis of Malleable signatures for defining

allowed modification and providing verifiable means of conformant processing)
• D5.10 — VERIDAP tool (full title: Privately and publicly verifiable computing

techniques providing privacy, integrity and authenticity)

Finally, there is also a close relation to WP6, where parts of the software implementation
happens. In particular, the final software implementation of the SECOSTOR tool is deliv-
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ered as part of the Prismacloud toolkit in D6.6 Final Release Efficient Implementation
of Selected Components.

1.3 Structure of the document

In section 2, a high-level overview of the SECOSTOR tool and its main idea and archi-
tecture is given. Before going into detail, in section 3 the most basic terms are defined in
an ontology.

In the following sections the core software modules are specified and explained. In partic-
ular the SECOSTOR tool consists of two main software components, one being a secret
sharing component and the other a robust and fault tolerant concurrency module. Further-
more, for the secret sharing component we support two different software implementations.
One is in Java and the other one in JavaScript. For the concurrency layer we present a
JavaScript implementation which fully integrated with the secret sharing component and
based on modern web technologies (Node.js).

After introducing the software libraries, in section 6 we discuss protocols which can be
built and added to storage system, which go beyond the basic storage functionalities. We
present solutions which — in our opinion — fit best into the SECOSTOR concept and
introduce least overhead, computation and/or communication wise.

In section 7 we discuss and address the importance of access control for secret sharing based
systems which base its security on the on-collusion assumption. We also present crypto-
graphic options and most suitable technologies from asymmetric cryptography which can
be used to improve collusion resistance and further strengthen the security of the system,
but without limiting data sharing capabilities in dynamic groups and without introducing
substantial computational burden on the client or the server.

In section 8 we discuss the availability benefits we get and the storage overhead accompa-
nying the different configurations. We also discuss, how virtual multi-cloud storage service
enable customers in the design of their own dedicated availability based on given standard
services from the cloud.

In the last technical section 9 we give an overview of the services and applications we are
building in the project based on the SECOSTOR tool. The sample applications should
give the reader a good understanding of the different trust models and security levels
which can be achieved and what they can expect from the tool.

Finally in section 10 we summarize the status of the development, draw some first conclu-
sions after developing the tool and give an outlook of future work to be addressed in the
piloting phase and even after the project.
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2 The SECOSTOR Tool

In this section we present the basic idea and concept of the SECOSTOR tool developed.
We show the abstract concept and architecture of the tool as developed in [LSLP16]. We
introduce the software libraries developed and how they are used in the project to build
secure services, i.e., in particular we summarize the features which can be achieved to
protect data at rest in multi-cloud applications.

2.1 Overview

The secure object storage tool SECOSTOR is dedicated to building secure cloud storage
systems which protect data from provider related threats.

To achieve the desired security properties we are leveraging the concept of secure informa-
tion dispersal – data is fragmented and distributed over different servers to build a secure
and reliable virtual service on top of multiple less reliable services. Due to the use of secret
sharing the individual fragments contain no information about the plaintext data. Our
goal is to design a storage layer which is more than the sum of its parts. No single cloud
provider shall have access to plaintext data or be able to tamper with them by modifying
local fragments nor are all fragments necessary to recover the plaintext. In summary, the
overall availability achieved by the Secure Object Storage Tool is better than the one of
individual nodes and the tool also prevents from most of provider related threats in cloud
usage.

In Prismacloud [LRD+15] we apply secure variants of data fragmentation called secret
sharing. With secret sharing, data can be encoded into multiple fragments such that
no single fragment contains any information about the original content and a predefined
threshold of k fragments is required to reconstruct the data. If these fragments (shares)
are distributed to different storage servers, the data stays secure w.r.t. confidentiality
protection as long as less than k servers are colluding to reconstruct the information and
the data stays secure w.r.t. availability as long as at least k honest servers are reachable.
Additionally, it must be noted that the confidentiality and availability guarantees of the
Prismacloud Secure Object Storage Tool are achieved via a fully keyless architecture,
which further facilitates sharing of data between different users in the system.

From a functional point-of-view, the tool provides a way for outsourcing data storage
to potentially less trustworthy and reliable storage providers with both increased data
availability and confidentiality [LAS15]. Furthermore, we are targeting robustness against
strong adversary models like active attackers or adversaries with unlimited computational
power. Additionally the tool is supporting concurrent multi-user access by potentially
malicious clients and provides other interesting features discussed below.

In Figure 2, the basic structure of a storage system based on a full scale SECOSTOR
deployment is shown.

The main advantages from such a system are the following:
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Figure 2: SECOSTOR overview.

• Increased data confidentiality and availability: The usage of threshold secret sharing
for data fragmentation improves both data confidentiality and availability. This is
due to parties in the system only holding a single data fragment are not able to
read or tamper plaintext data. Availability is given by the fact that only a subset
of generated fragments is needed to reconstruct the original data.
• Reduced storage overhead: if computational-secure secret sharing is used, the overall

amount of data capacity required to reach a certain level of availability can be
substantially reduced in comparison to simple mirroring strategies or perfectly secure
secret sharing. In Figure 3 the overall amount of data used is compared to a simple
2 replicas strategy. The advantage is substantial for higher number of nodes, i.e., if
more than 4 nodes are available to store fragments.
• Prevent from provider lock-in: by its very nature, the system builds on standard

technologies and enable interoperability between different storage providers. The
tool itself is not dependent on any particular storage offering and used data formats
are fully open and documented. Using open formats as well as the usage of published
and well documented algorithms is essential to the tool. In particular, this report
(and its successor) serves as the main specification of the SECOSTOR tool, detailing
all aspects of the implemented features and mechanisms.
• Keyless operation: using encoding instead of standard encryption techniques gives

the advantage of keyless operation. Security is governed by non-collusion of parties
holding the fragments and not by any private key. Without a key, that there is
no complex key management required which is very favorable in many situations,
although credentials are usually still needed. Nevertheless, the practical relevance
of security based on non-collusion assumption is still a controversial topic, secret
sharing is the only known information theoretical secure method to protect data
at rest, i.e., it is the best candidate to start with when building long-term secure
systems.
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2.2 Tool architecture

The tool provides essential functionalities to build systems as shown in Figure 2. The tool’s
architecture makes usage as simple as possible and encapsulates cryptographic protocols
as good as possible (cf. Figure 4). The tool comprises two main modules:

archsitar-smc is a comprehensive secret sharing library containing the most important
algorithms relevant for the storage setting. It supports efficient encoding and de-
coding for different adversary scenarios, i.e. the different secret sharing algorithms
selected.

archsitar-bft is SECOSTOR’s second core library. It contains all components necessary
to easily support concurrency and robustness in a distributed system. It provides
robustness against active Byzantine attackers or failures and therefore provides the
strongest possible notion of security for our storage network. This module is essential
for scenarios where multiple clients or users have to be supported.

While they can be run alone, they have been also been designed to be used in conjuction
with each other. In addition, higher level protocols will be built from the basic tools by
configuring them in a specific manner or applying them for specific purposes, e.g, like for
remote data checking or secure deletion.

Both modules are part of the Archistar software framework. Archistar is intended to
provide a full SECOSTOR implementation as well as sample service implementations to
simplify adoption of Prismacloud’s results. As such the Archistar framework will be a
comprehensive environment for commercialization of project results in the area of secure
object storage.

In addition to the two main software libraries the SECOSTOR tool will provide addi-
tional guidance in the usage and application of the provided software and present some
recommendations for integration in services and applications.
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Figure 4: Core libraries of the SECOSTOR tool.

2.3 Component Model

This tool is dedicated to build cloud storage systems with strong security guarantees,
w.r.t., confidentiality and availability. It builds upon the idea of a federated or multi-
cloud application [SH12] and the different components of the tool are shown in Figure 5.
A dealer component generates data fragments and sends them to storage nodes called
servers. The servers can be considered storage nodes which are also comprising active
components with the ability to execute protocol logic in addition to the basic read and
write operations supported by passive cloud storage interfaces. The reader component is
reconstructing the data for read operations and the verifier is able to audit the storage
system, i.e., it can remotely check the state of the data stored in the system.

Dealer
(Client)

Server 1
(Provider)

Server 2
(Provider)

Server n
(Provider)

.

.

.

Reader
(Client)

Verifier
(Auditor)

Figure 5: Secure Object Storage Tool (SECSTOR).

In the following we are briefly reviewing the components and their function and interfaces.

Dealer Component. The main function of the dealer component (Dealer) is to encode
the data and generate the different fragments used in the distributed storage network.
The dealer works on unstructured data, and at its core, it implements secret sharing
protocols. However, in order to support different application scenarios, adversary models
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and network models, the component must support various encoding schemes and protocols.
The common functionality behind the different protocols is that of threshold secret sharing.
The choice of threshold sharing used ranges from plain information theoretical solutions
(PSS) to more efficient but only computational secure variants (CSS) and also verifiable
versions if the dealer component is running on untrusted platforms. On the connectivity
level, the dealer requires an authentic and private communication channel to each server
in the system.

Server Component. The server component (Server) represents the storage backend
used to compose the cloud-of-clouds storage layer. Multiple servers are required and each
of them communicates with the Dealer over a secure channel (authentic and private).
The different servers are holding the data and represent storage nodes in different trust
zones of the system. The trust zones are used to model the non-collusion assumption. In
practice, storage options range from fully-federated dedicated cloud providers to storage
nodes under different administrative domains within a cloud provider’s data center. The
server components are communicating with the dealer over secure channels and for some
of the features provided by the tool, the servers also have secure channels between them.

Reader Component. The reader component (Reader) is responsible for reconstruction
of data stored in the system. Basically it encapsulates the reconstruction procedure of the
used secret sharing method plus the interaction protocol to get sufficient shares to recover
the plaintext information desired. We assume secure channels between a reader and all
involved servers in the system.

Verifier Component. This component is responsible for the verification of data stored
in the system. Together with the servers it conducts a protocol to obtain a proof about the
retrievability of stored data, i.e., it remotely checks if the servers are still storing consistent
fragments. The verifier is not considered to be trusted, therefore, the auditing protocols
executed must be privacy preserving, i.e., it must not leak any information about the data
stored. Based upon this, the verifier must have an authentic channel to each of the servers,
but those channels don’t need to be confidentiality protected. The Verifier is intended to
model a third-party auditing service which can check the data consistency remotely with
strong cryptographic properties but without learning anything about the data.

2.4 Software Implementation

The modules of the SECOSTOR tool are currently being implemented. The secret sharing
library archistar-smc is implemented in Java and provides a clean interface to access var-
ious kinds of secret sharing algorithms. In addition, there is a JavaScript implementation
under development to fully support client side encoding within browsers.

The BFT module (archistar-bft) will encapsulate the concurrency layer of the distributed
storage system and is also under development. It is implemented in JavaScript on the
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basis of modern web technologies (Node.js). The current version supports the storage of
plaintext data in redundant forms; integration of secret sharing protocols is ongoing.

2.5 Services Based on SECOSTOR

In Prismacloud two services are based on the SECOSTOR tool. The services are aiming
at different application scenarios and require different features of the tool. In Figure 6 the
basic idea for deployment of different components is shown for the two flavor of services.
In the following we briefly review the services, a detailed description of the services can
be found in D7.5.

Dealer
(Client)

Server 1
(Provider)

Server 2
(Provider)

Server n
(Provider)

.

.

.

Reader
(Client)

Verifier
(Auditor)

Secure Object 
Storage Tool

Client

SAaaS

Dealer
Reader

Verifier

Server

Server

Server

Server

Client

DSaaS

Verifier

Server

Server

Server

Reader

Client

Client 2
Dealer
Reader

Client

Dealer

Reader

Dealer

Figure 6: Services based on SECOSTOR.
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Secure Archiving Service (SA or SAaaS). This Prismacloud service is intended as
a replacement of existing storage services. The service provides a standard object storage
interface to end-users and performs all data fragmentation and dispersal transparently
w.r.t. the back-end. It serves as a gateway hiding the full complexity from the user of the
cloud storage solution. However, because the gateway does everything in one place it has
to be fully trusted by the user and run in a trustworthy environment. Due to this trust-
model and the provided interface it is ideally suited in backup and archiving scenarios,
like also demonstrated in the e-Government pilot of the project. In summary, the service
can easily be integrated into cloud based backup solutions and provides a demonstratable
higher level of data privacy and availability than the usage of standard cloud storage
services. The service model for this service is IaaS.

Data Sharing Service (DS or DSaaS). This Prismacloud service targets scenarios
with multiple users who like to share data between them. The service allows multiple
parties to securely store data in a cloud-of-clouds network, such that no single storage
node learns plaintext data, while still enabling the owner to share the data with other
users of the system, i.e., the data sharing service supports secure collaboration without
the need to trust one single storage provider. The service model of this service is IaaS
and the service is intended to be deployed in a private cloud but enables the user to build
hybrid cloud storage systems.
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3 Terms and Definitions

In this section we introduce an ontology for the SECOSTOR tools. We summarize and
define most important terms in order to establish an unambiguous vocabulary for the
project and beyond.

3.1 Secret Sharing Basics

Secret sharing is a core functionality of the SECOSTOR tool and at the heart of its
encoding engine. In the following we are going to define most important terms for the
specification of secret sharing algorithms.

For best compatibility with standards, the secret sharing part of the ontology is heavily
based on ISO/IEC 19592-1:2016, which has just recently been released and is exactly
intended as reference and basis to specify secret sharing algorithms. In fact, the first
standard on secret sharing algorithms is currently in preparation and will be published
as part 2 under ISO/IEC 19592-2:2017 very soon. All this standards activities of secret
sharing have great importance for us and come in the right time to support our exploitation
activities. It is also interesting to observe, that although secret sharing is a rather old
concept, standardization of it in ISO was just started recently. Nevertheless, the upcoming
standard is very basic in nature and not containing all relevant algorithms relevant for
efficient storage scenarios nor advanced protocols with verifiability properties.

The following values and algorithms are used:

Message. The message is the secret which is going to be encoded for confidentiality
protection.

Treshold. The minimal number of shares needed for the share vector to reconstruct the
message. In the following, this value is denoted by k.

Message sharing algorithm. The message sharing algorithms is the Share method
from the secret sharing algorithm. It takes a message as input and outputs the
shares.

Share. Shares are the fragments generated by encoding the input message in sharing
algorithm Share which are then stored at the server by the dealer.

Share vector. A vector of shares output by the sharing algorithm Share.

Message reconstruction algorithms. The message reconstruction algorithm is theRec
procedure from the sharing algorithm. It takes k the shares as input and outputs
the recovered message.

Secret sharing scheme. A secret sharing scheme consists of a set of two algorithms,
Share and Rec. Share is used to encode input message into n shares which are then
distributed to different servers. A more formal definition is given in Section 4.3.
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We distinguish between the following types of parties:

Dealer. The dealer is responsible for encoding of the data and he does so by calling the
Share algorithm of the secret sharing scheme. The dealer is equivalent to the dealer
component presented in Section 2.3.

Reader. The reader, also often called receiver or reconstructor, is receiving the shares
and decoding the message by running the reconstruction algorithm Rec.

Server. A party holding shares distributed by the dealer.

3.2 Remote Data Checking

Remote data checking enables a party to check the retrievability of remotely stored data.
One characteristic of this idea is, that it has to be more efficient than downloading all
data and checking it locally. From the requirements gathering for the SECOSTOR tool
we learned that this is an extremely favorable property for cloud based data backup and
archival, therefore we made it an integral part of the SECOSTOR architecture.

Verifier. In the context of remote data checking, the verifier is the component trigger-
ing the protocol for checking the consistency and retrievability of shares stored on
servers.

Remote data checking. A protocol run between a verifier and one or more provers to
assure the possession or retrievability of data (shares) hold by the prover(s).

Prover. The entity holding the data (shares) and the counterpart of the verifier in the
remote data checking interactive protocol. In the SECOSTOR model the servers are
also the provers.

3.3 Adversary models

There are different ways to categorize adversaries based on the computational power they
have, the network model they are bound to, and protocol level activities they can conduct.
In the following we define the most relevant adversary models for our purpose. In a
distributed system these modeling decision and assumption can have a bit impact on the
design of the protocols.

3.3.1 Computational Power

Bounded vs. unbounded. We distinguish computationally bounded and unbounded
adversaries. For the former, we assume that the number of computations the adversary can
perform is bounded above by some polynomial in the security parameter. Security is then
proved under some computational assumption; that is, breaking the scheme would require
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the adversary to solve some computational problem which is believed to become super-
polynomially more complex when increasing the security parameter. This approach is also
taken for most other cryptographic primitives, such as encryption or signing. Protocols
secure against bounded adversaries are also said to provide conditional security.

For unbounded adversaries, we do not pose any restrictions whatsoever on the computa-
tional power; schemes secure against unbounded adversaries are also called information
theoretically or unconditionally secure, and are of key importance when designing long-
term private cryptographic systems. This is because security is guaranteed independent
of potential future developments in the computational power of the adversary.

3.3.2 Network Model

Synchronous vs. asynchronous. In synchronous systems, it is assumed that protocols
proceed in rounds: all messages sent in one round are available to their receivers at the
beginning of the next round. This assumption often allows for elegant protocols and
relatively simple proofs. However, such a network model is only realistic if all nodes run at
roughly the same speed, the network is very stable, etc. In contrast, in an asynchronous
model, also network latency or simply different computation speeds on different nodes
where one does not want to always wait for the slowest node are modeled. Assuming
an asynchronous network is often far closer to reality, in particular for protocols that
are to be carried out over the Internet and not only, e.g., in a company-internal data
center. However, allowing asynchronicity often causes a considerable overhead in the
computational costs of a protocol, and also results in much more intricate security proofs.

3.3.3 Protocol Level

Passive vs active. This is the most basic categorization of adversaries on a protocol
level. A passive adversary is only allowed to corrupt a party in the sense that he may see
the party’s internal state and all messages it receives or sends, but it is not allowed to
change the behavior of the machine. Such adversaries are also called honest-but-curious.
In contrast, an active or Byzantine adversary may in general force corrupted nodes to
deviate arbitrarily from the protocol specification.

Adaptive vs non-adaptive. Generally speaking, a non-adaptive adversary has to de-
cide which parties to corrupt right away when the protocol starts. On the contrary, an
adaptive adversary is allowed to corrupt parties depending on what he has already seen in
the protocol so far. That is, an adaptive adversary is allowed to corrupt the “most promis-
ing” parties at a given stage of the protocol. One can think of a non-adaptive adversary as
a malicious party which already compromises a system at manufacturing time, but which
cannot compromise additional devices once they have been shipped, which would still be
able for an adaptive adversary. From a practical point of view, adaptive security clearly
becomes more important with an increasing lifetime of the system.
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The precise meaning of adaptiveness depends on the concrete protocol, and will be specified
in detail for each protocol.

Static vs mobile. Assuming a static adversary means that once a party got corrupted,
it will stay corrupted until the end of the system. This may be reasonable for short living
systems. However, in the case of long-term storage scenarios, a single node might be reset
to an honest state once the corruption is detected. We call such an adversary mobile, as
he is able to corrupt different nodes at different points in time. Sometimes the respective
corruptions are referred to as transient.

A special case of mobile adversaries are so-called smash-and-grab attacks. There, it is
assumed that the adversary corrupts a node, copies its entire internal state, and imme-
diately leaves the node again. For instance, this is meaningful when one wants to model
data leaks where an insider copies information and makes it publicly available.

Rushing vs non-rushing. This differentiation is specific to robust secret sharing schemes,
namely when an adversary sends maliciously altered shares back to the user, e.g., in order
to make it impossible to reconstruct the shared secret. There, a non-rushing adversary is
forced to decide how he wants to alter the shares of corrupted servers before the recon-
struction phase starts. A rushing adversary has the additional possibility to first see the
shares sent by the honest nodes, and then to decide how to alter the shares.

This adaptive behavior of the adversary must not be confused with the categorization
of adaptive or non-adaptive adversaries, which lets the adversary decide which parties to
corrupt; so, even an adaptive adversary may be non-rushing or vice versa.

Honest vs corrupted dealer. An honest dealer is always assumed to send consistent
shares to all servers, whereas a corrupted dealer might send arbitrary and inconsistent
shares to the servers. In particular, for a corrupted dealer it cannot be guaranteed that
every qualified set of shares reconstructs to the same secret, or whether it reconstructs
to a valid secret at all. While assuming a dishonest dealer might seem artificial at first
glance, this might, e.g., happen due to corrupted devices sending altered messages on the
network interface without the user noticing. Also, transmission errors on a network level
could be detected if a scheme is resistant against dishonest dealers.

3.3.4 Consistency Models

In the following, a trace is defined as sequence of Read and Write operations upon a
shared resource (i.e. x). The operations can be executed by one or more processes.

Strict consistency denotes that after a Write operation W (x) at time t all subsequent
Read operations R(x) on any node at time t′ with t < t′ will always return the newly
set value. As t′ can be chosen arbitrarily small this implies that an operation’s result is
visible after execution on all nodes immediately.
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Linearization or total ordering. Traces contain two orderings: internal and external.
The internal order is given through the execution flow within a single process; the external
order depends upon the ordering of execution time of all operations. Linearization is
achieved if both orders are preserved, especially operations are executed in the same
external order. In contrast to strict consistency this does not imply that an write-operation
is immediately visible on all nodes at the same time.

Sequential consistency. Within this model all operations need the internal order but
not the external order. All processes see all the write operations in the same order.
Linearization is stronger than sequential consistency thus each linearized trace is also
sequential consistent.

Causal consistency requires that processes see all writes that are causally related in
the same order. The order of read operations must be consistent with the causal order.
Write operations that are not causally related can be seen in any order by different pro-
cesses. For example, given two non-related write operations Write(x, 10, process1, t1) and
Write(x, 15, process2, t2), processes process3 and process4 are free to read the new values
in any order i.e. process3 could first read x = 10 then x = 15 while process4 could do
this in reverse. This example would not be sequentially consistent as all processes do not
see all writes in the same order.
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4 Secret Sharing Library

Now we are going to present the secret sharing library. Therefore, we start with a quick
overview of supported algorithms and present major parameters relevant for its usage. We
further specify the selected algorithms and discuss the current software implementation.

4.1 Overview

The basic idea of the SECOSTOR tool is to protect the confidentiality, integrity and
availability of data by the application of secret sharing. By the use of secret sharing data
is fragmented into different parts which are then stored at different server which are also
different trust zones.

Trust zones are a way formalize the security given by the non-collusion assumption of
secret sharing and they can be realized in different ways. If multiple cloud providers are
used to store the fragments (shares) we are in a multi-cloud environment and the non-
collusion is evident, because the different providers are not assumed to collude. However,
the tool can also be used within an organizations boundary, if administrative boundaries
exist between different parts of the infrastructure which can be used to implement trust
zones. This is also a realistic assumptions, because larger infrastructures typically have
different administrative zones to avoid larger breakdowns caused by configuration errors.
Hence, also in a single operator situation can the SECOSTOR tool help to protect the
confidentiality of customer data. Furthermore, if both concepts are combined in hybrid
cloud scenarios the best of both worlds can be achieved.

In order to provide best flexibility and to cope with different adversary models we decided
to support 4 main classes of algorithms. In particular we selected the following:

• Perfectly secure secret sharing (PSS): This mode provides security against unbounded
attackers in the long term and is easy to use and implement. However, because its
security is information theoretical, each share has the same length as the plaintext
data. This mode is ideal for highest security requirements and small to medium size
of data.
• Information dispersal (IDS): This mode does not support confidentiality at all, but

efficiently fragments data to be protected against loss. Similarly to secret sharing
data is split in parts whereby only a subset of the generated parts are required
to reconstruct the message. However, the threshold functionality enables one to
efficiently store data on multiple servers in a reliable way more efficiently that by
simply replicating the information. This mode is ideal for high availability, if no
confidentiality is needed.
• Computational secure secret sharing (CSS): This mode combines both properties of

the above ones into a single secret sharing protocol. It provides efficient and secure
way to fragment data, although its security can only be against computationally
bounded adversaries. Furthermore, this method also does not have any homomorphic
properties anymore and is therefore ideally suited for bulk storage of large amounts
of data.
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• Robust secret sharing (RSS): All of the above protocols support robust versions and
are able to cope with actively malicious parties to some extent. However, if the
robustness guarantees given by the different solutions are not good enough, specific
protocols have been designed to even protect the integrity of data as long as the
majority of parties are honest.

A detailed description of the implemented algorithm is discussed in Section 4.3 after we
introduced the basic parameters and properties in the following.

4.2 Parameters and Properties

Following are the important parameters of the core secret sharing part of the SECOSTOR
tool:

• Message space: finite field Fq.
• Share space: same as the message space.
• Number of shares/parties: n ≥ 2, n < |Fq|
• Threshold: k, so that n ≥ k ≥ 2.
• Fixed field elements: xi ∈ Zq for 1 ≥ i ≥ n.
• Number of actively corrupt parties: t
• Number of failstop parties (erasures): e
• ith party/server: Pi
• Share given to Pi: σi

In our description we assume that each storage node is getting one share. When nodes
with different trust levels are used it may be more efficient to vary the number of shares
per server, i.e., more trustworthy nodes can hold more shares. In this case, the reader
of this document can easily transfer the presented results to the respective scenario with
individual servers holding multiple shares.

All secret sharing variants in the SECOSTOR tool only support a fixed message space
of 256 (or 28). However, this does not impose any restriction on the algorithms, because
compound data can always be processed in sequential form. Hence, arbitrary file length
can be supported without loss of generality. In fact, the more efficient variants specifically
leverage the possibility to encode more plaintext elements into one set of shares.

The main properties which will be analyzed for the different algorithms are

• Confidentiality: The level of security guarantees which will be provided.
• Integrity: The bounds for the protection of the identity.
• Information rate: Gives an indication of the share size which can be achieved.
• Homomorphic operations: Tells if the secret sharing scheme supports homomorphic

operations.
• Complexity: Considerations regarding the computational complexity or the commu-

nication complexity of the algorithm.
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4.3 Algorithms and Protocols

Different flavors of secret sharing exist in the literature and we selected the most relevant
ones to be used in the SECOSTOR tool after assessment of the state-of-the-art in D4.1.
For Prismacloud we focus on secret sharing schemes with threshold access structures,
because they are the most efficient and practical ones for storage systems. All variants
share the same abstract interface which is defined in the following.

Abstract interface

A secret sharing scheme allows a dealer to distribute a secret s between n parties Pi for
i = 1, . . . , n such that the secret can only be reconstructed if a qualified subset of these
parties collaborates, while no other subset can learn any information about the secret.
The set of all qualified subsets forms the access structure of the system:

Definition 4.1. A set Γ ⊆ 2{1,...,n} is called a monotone access structure on {1, . . . , n} if
it is a family of sets such that the following is satisfied: if A ∈ Γ and B ⊇ A, then B ∈ Γ.
A set G ∈ Γ is called qualified, a set N 6∈ Γ is called non-qualified.

For the sake of simplicity we here identified the set P = {P1, . . . , Pn} of parties with the
set {1, . . . , n}. Here and in the following, we will mainly focus on threshold schemes, where
a set is qualified if it consists of at least k parties for some fixed k ≤ n. That is, for a
threshold scheme, the access structure is given by Γ = {G ⊆ {1, . . . , n} : |G| ≥ k}.

We can now formally define a secret sharing scheme for an access structure Γ.

Definition 4.2. A secret sharing scheme for a set S of secrets and a monotone access
structure Γ ⊆ 2{1,...,n} is a pair of PPT algorithms share, reconstruct:

share: On input s ∈ S, this algorithm outputs shares σ1, . . . , σn ∈ {0, 1}∗.

reconstruct: On input {(i, σi) : i ∈ G} this algorithm outputs s′ ∈ S or ⊥.

Perfectly secure secret sharing (PSS)

In this category of algorithms we selected the most prominent representative for imple-
mentation, namely Shamir secret sharing as proposed in [Sha79]. This version has many
desirable properties and is good suited for both, software and hardware implementation,
especially if small message spaces can be used.

Algorithm: Perfectly secure secret sharing (PSS)

share: On input s ∈ S := Fq, this algorithm chooses a1, . . . , ak−1
$← Fq such that ak−1 6= 0,

and defines:
f(x) := ak−1x

k−1 + · · ·+ a1x+ s .
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The algorithm now outputs σi := f(i) for i = 1, . . . , n.

reconstruct: On input at least k inputs of the form (i, σi), this algorithm computes the
unique interpolation polynomial g(x) of degree k−1 in Fq[x], and outputs s′ = g(0).

The main properties which can be achieved are given in the following:

• Confidentiality: The secret sharing scheme is information-theoretically confidential,
when the receiver has less than k shares available, i.e., perfect. Even unbounded
adversaries are not able to recover the plaintext.
• Integrity: The completeness of secret sharing schemes guarantees the integrity of

stored data and if more than k shares are available for reconstruction additional
error checking can be performed.
• Information rate: The size of message and share are the same as the size of an

element of the finite field Fq. Information rate is 1, i.e., ideal for unconditional
confidentiality.
• Homomorphic operations: A secret sharing scheme is (+,+)-homomorphic where

addition on share vectors is performed as [a+ a′]i = [a]i+ [a′]i.
• Complexity: Sharing algorithm requires (k − 1)n multiplications and (k − 1)n ad-

ditions. The message reconstruction algorithm requires k divisions, 2k2 − 3k multi-
plications, and k2 − 1 additions. In summary the algorithms can be considered as
efficient.

Information dispersal (IDS)

The information dispersal algorithm is very related to the PSS algorithm presented above.
It is also very similar to Reed-Solomon codes an provides a very flexible and efficient way
to increase the robustness of fragmented data. It provides the same interface like secret
sharing but does not protect the confidentiality of data. Thus, it is also similar to the
Ramp version of Shamir secret sharing which the highest information rate.

The main properties which can be achieved are given in the following:

• Confidentiality: No security is achieved by the algorithm.
• Integrity: This property is analog to PSS.
• Information rate: The size of message is reduced. Each share has only size s/k,

which is extremely efficient, i.e., it is optimal.
• Homomorphic operations: IDS is also (+,+)-homomorphic like PSS.
• Complexity: Sharing algorithm requires (k− 1)n multiplications and (k− 1)n addi-

tions for share generation, however, k input words are processed in one cycle which
reduces the complexity by a factor of 1/k. The same is true for reconstruction.
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Computational Secret Sharing (CSS)

This mode of encoding is a combination of the first two versions and enables efficient and
secure storage of data. The combination is known as computational secret sharing and
was first proposed by Krawczyk [Kra93b]. The tool was selected, because it has been well
studied and it is ideally compatible with IDS and PSS algorithms selected in SECOSTOR
and also efficient to implement. On a high level, the idea is to first encrypt the data s
using a symmetric encryption scheme, and then apply the secret sharing scheme to the
used key and the information dispersal scheme to the resulting ciphertext.

More formally, the algorithms share and reconstruct are as follows, where (Enc,Dec) is a
symmetric key encryption scheme, (share′, reconstruct′) is a perfectly private secret sharing
scheme, and (share′′, reconstruct′′) is an information dispersal scheme:

Algorithm: Compuational secret sharing (CSS)

share: On input data s, this algorithm first draws a random encryption key K for the
symmetric encryption scheme, and computes e = EncK(s). It then computes:

(σK,1, . . . , σK,n)
$← share′(K) and (σe,1, . . . , σe,n)

$← share′′(e) .

The algorithm outputs σi = (σK,i, σe,i) for i = 1, . . . , n.

reconstruct: On input at least k shares of the form (i, σi) = (i, (σK,i, σe,i)), this algorithm
first computes:

K ′
$← reconstruct′({(i, σK,i) : i ∈ I}) and e′

$← reconstruct′′({(i, σe,i) : i ∈ I}) ,

where I is the set of input indices. It then outputs s′
$← DecK(e′), or s′ := ⊥ if one

of K ′, e′ was equal to ⊥.

It is easy to see that for long secrets s, the size of the shares is dominated by that
from the information dispersal scheme. Similar to Shamir’s scheme, a simple and effi-
cient scheme to disperse k elements a0, . . . , ak−1 ∈ Zq is to define the polynomial f(x) =
ak−1x

k−1 + · · · + a1x + a0, and to output shares σi = f(i) for i = 1, . . . , n. Now, if the
encryption scheme maps into Fq, this information dispersal scheme – and as a result also
Krawzcyk’s computationally secure secret sharing scheme – asymptotically achieves the
optimal storage overhead of n/k.

For symmetric encryption and message authentication following algorithms have been
selected and are currently available:

• Advanced encryption standard (AES) is available in CBC and CTR mode as sym-
metric encryption cipher. AES is considered secure by many standards and can be
regarded as the safe and conservative choice in our secret sharing suites.
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• Chacha20 is available as alternative. Chacha20 is a fast and modern stream cipher
based on Salsa20, a recommended cipher by the eSTREAM project1.

The main properties which can be achieved are given in the following:

• Confidentiality: Security against computationally bounded adversaries is given by
this scheme.
• Integrity: This property is analog to PSS and IDS, because they are used as subal-

gorithms.
• Information rate: The size of message is reduced. Each share has only size s/k

plus a constant size part where the encryption key is stored, i.e. 128/256 bit word
container.
• Homomorphic operations: CSS does not allow for any homomorphic operation.
• Complexity: Same as IDS plus one encryption run for the plaintext data plus one

PSS run for a 128/256 encryption key.

Robust Secret Sharing (RSS)

Basic secret sharing schemes as discussed previously assume that all parties are honest-
but-curious. That is, they are secure as long as at most k−1 parties pool their shares, but
it is assumed that they otherwise stick to the protocol specification. Now, in the case of
an outsourced storage application, it might be possible that an adversary sends malicious
responses at reconstruction time. Such malicious shares could prevent the reconstruction
of the original secret s, or result in a reconstructed secret s′ 6= s without the dealer being
able to detect this. Unfortunately, basic secret sharing schemes in general do not offer any
protection against such misbehavior; schemes offering this level of security are referred to
as robust.

Error decoding. A straight forward way to make our PSS scheme robust for every
t < n/3 is to use an error decoding algorithm in the reconstruction. Error decoding is
supported by the SECOSTOR tool and can be used under the given condition. In particu-
lar it is required that for reconstruction always k+2t+1 shares are available, i.e., for every
corrupt share there is at least an additional valid one available. The very same decoding
algorithm can also be used to decode IDA fragments, hence, we also have a t < n/3 IDA
available. Finally, because CSS is also based on PSS and IDA as subalgorithms SECOS-
TOR also provides robust CSS. The modular design enables full set of robust algorithms
with just one error decoding algorithm implemented. However, we would like to empha-
size, that the complexity increases substantially and decoding speed can be significantly
slower compared to erasure decoding.

Information checking. For a reasonable size of storage nodes the very basic informa-
tion checking algorithm came out to be still the most versatile one with reasonable overhead

1http://www.ecrypt.eu.org/stream/
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compared to more advanced and optimized schemes. We therefore specify an uncondition-
ally private RSS schemes, which is based on the idea of Rabin and Ben-Or [RB89] often
referenced as information checking. On a high level, in the scheme the dealer extends
the share sent to a party by message authentication codes. That is, for every party Pj ,
the share of Pi is authenticated with a tag τi,j , and the corresponding key is given to
Pj . At reconstruction phase, the shares can now be checked for correctness by checking
whether they are accepted by sufficiently many tags. To have a failure probability negli-
gible in λ, MACs with length at least λ bits need to be used, and thus each player needs
to additionally store Ω(λn) bits.

Fingerprinting. If one is aiming for computational privacy only, it is possible to sig-
nificantly reduce the overhead of the construction from [RB89]. Namely, instead of using
a keyed MAC, one can simply compute a hash of each share, which is then distributed
among the parties Pi. This distribution is done such that only t + 1 honestly returned
parts are necessary to reconstruct the hash value. Doing so, the reconstruction algorithm
can then check which shares of the secret were returned honestly, and the secret can be
recomputed. This scheme was originally proposed by Krawczyk [Kra93a] together with his
CSS proposal. In a straight forward way, the hash values of the shares can be appended
to the shares which then let accept correct hashes by voting, i.e., if it appears at least t+1
times.

In summary, with error decoding all presented schemes (PSS, IDS and CSS) can be made
robust against n > 3t+1 errors. In this case the decoding speed decrease significantly and
at least 2t+1 valid input shares are required to start decoding. If information checking or
fingerprinting is used respectively, immediate decoding is possible as soon as t+ 1 shares
are attested by the additional checking information and also faster decoding is possible
although additional hash functions have to be calculated. Furthermore, the share size
increase for information checking can be substantial if amortized over larger batches of
data.

4.4 Operational Aspects

Based on the available algorithms in the SECOSTOR tool we propose to consider following
operational aspects for system implementation.

• All connections between clients (dealer, reader) need to be encrypted and authenti-
cated. We recommend to use mature technology to implement secure channels like
TLS or similar.
• Because of the keyless nature of secret sharing, strong authentication and good access

control mechanisms are extremely important for a complete system.
• Each user should have different credentials on the different system.
• If long-term security is of major importance PSS should be selected as fragmentation

algorithm, it is the only which supports the unconditional security plus the homo-
morphic properties to execute more advanced proactive secret sharing protocols.
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Figure 7: Overview crypto engine.

4.5 Architecture and Design of Software Library

In Prismacloud we are developing two different implementations of the SECOSTOR
tool.

4.5.1 Java Library

The archistar-smc cryptographic library allows applications to easily include secret-sharing
functionality. We differentiate between high-level (intended for application use) and low-
level (internal) interfaces.

Engines. The high-level application interface, named ”CryptoEngine”, is currently im-
plemented by two engines, providing the CSS and PSS schemes described above. Engines
therefore bundle secret-sharing algorithms with information checking (in the case of PSS)
or fingerpriting (in the case of CSS) techniques. While all engines implement the same
external interface, they differ feature-wise. This makes it technically possible to exchange
engines with minimal user application changes – the developer has to verify that the new
engine’s features make it feasible for usage w.r.t. to error resilience, performance and
privacy impact. An overview of the engines is given in Figure 7.

Algorithms. Each concrete algorithm implements a single theoretical algorithm. En-
gines combine one or more algorithms to provide a better application developer experience.
Examples of implemented algorithms are Shamir’s Secret-Sharing or Rabin Information
Dispersal. In a sense, algorithms are pure logic as integration with the real environment,
e.g., integrating a random number generator, happens within engines. A class diagram of
the secret sharing implementation can be found in Figure 8.
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Figure 8: Class diagram secret sharing implementation.

Data Structures. Engines create shares from incoming user data and can be used to
recreate the original data from a subset of those generated shares which are represented
by the ”Share” interface. For this purpose, it includes both the raw shared data and
(dependent on the kind of algorithm used) the metadata necessary for reconstruction.
The interface also encompasses methods and data necessary for checking the integrity of
the data.

Every engine creates its own type of share, and to facilitate error handling, there is an
additional ”BrokenShare” so that methods can uniformly return (collections of) objects
that conform to the interface.

A class diagram is given in Figure 9.

4.5.2 JavaScript Library

The JavaScript library is for the most part a straightforward translation of the Java ver-
sion, though JavaScript’s prototype-based object model and its good support for unsigned
integer types made it possible to simplify the architecture and leave out a number of helper
methods.

It is nevertheless considerably less advanced and contains only the bare minimum of func-
tionality. There is therefore no distinction between Engines and Algorithms, and there
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Figure 9: Class diagram of share/fragment data structure.

are no Shares. All three basic algorithms, however, are implemented: Shamir, Rabin,
Krawczyk. Each is instantiated with n and k (and a random number generator, in the
case of Shamir and Krawczyk). On calling the function ”encode” on a fully instantiated
algorithm, a JavaScript object containing the secret-shared data (and the secret-shared
key in the case of Krawczyk) is produced.
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5 The Byzantine Fault Tolerance Library

Besides the comprehensive secret sharing component the robust concurrency layer is the
second main software component of the SECOSTOR tool. In the following we specify
the basic algorithms and protocols as well as the software architecture of the software
implementation in detail.

5.1 Overview

An important distinction between methods to manage concurrency in distributed systems
is their underlying error model. In particular, what types of failures respective attackers
are assumed. Within crash-fault systems, a defective part may either answer correctly
or not answer at all. Depending on the detailed model, an once-defective part might not
become online again. This closely resembles a server experiencing a power fault. Within
the stronger Byzantine fault model a faulty part may fail in any conceivable way, i.e.,
this includes parts behaving maliciously. We have chosen the Byzantine model for our
prototype because we want to have increased resiliency and build a system which would
suit our mission-critical applications. Building a maximally robust system is also a very
good exercise to test performance limits of such systems. Converting the results to more
mild settings later on is easier and a straight forward exercise, once we fully understand
the protocols for the Byzantine case.

The SECOSTOR data distribution mechanism must solve different problems: multiple
clients must be able to access and alter data upon multiple data servers in parallel. Neither
a defective client nor data server should be able to fully deny the overall system to other
parties. More specific, in our use-case we need to distribute the created data shares upon
multiple servers and strong consistency must be prevail, i.e., even if a small subset of
malicious servers modify their shares, a non-malicious client that accesses the (larger)
subset of non-malicious data servers should be able to access and modify stored data.

5.2 Algorithms and Protocols

The most prevalent BFT protocol for storage solutions is the PBFT protocol [CL02],
which is the most efficient one in practical settings. It is based on a network model with
only weak synchrony and has only three phases of overhead. It is the best suited solution
for our more static scenario with a rather manageable amount of network nodes and good
connectivity. Here we give a brief overview of the main protocols and underlying state
machine. For clarity of presentation, we present the protocol in its vanilla form, and omit
any possible performance optimization. PBFT assumes a system consisting of n servers
(or replicas), which are connected through authenticated and private channels.

At most f = bn−13 c nodes may be faulty. Exactly one replica is designated as primary.
The system moves through a sequence of views, where the primary changes with every
view-change in order to cope with malicious primaries. The view-concept introduces the
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(a) Message flow diagram. (b) State machine for replication.

Figure 10: Overview PBFTprotocol. Black arrows describe the message flow of the vanilla
version. The dashed blue arrows show the extension needed for integration with secret-
sharing.

concept of bounded synchronicity into an otherwise asynchronous system.

In PBFT a client sends the operation to the designated primary node. The primary
associates an unique counter and broadcasts the operation and the counter to all other
replicas as PREPREPARE message. Upon receiving this message all replicas broadcast a
PREPARE message including a hash of the operation and its sequence number. If more
than 2t+ 1 prepare messages (including one’s own) are received by a replica, it broadcasts
a COMMIT message. After 2t + 1 matching COMMIT messages have been collected
by a replica and all transactions with lower sequence numbers have been performed, the
requested operation is executed and the result sent to the original client. After t + 1
matching results the client knows the operation’s result. The archetypal message flow
diagram as well as state diagram describing a single operation/transaction can be seen in
Figure 10.

As discussed, PBFTdoes provide robustness with respect to malicious clients or nodes
but it does not allow for determining which of the entities did behave malicious. In order
to detect which client or PBFTnode behaves malicious we added log trails. These log
trails allow for an audit which could be conducted in a distributed manner or at a central
trusted instance, supporting the detection of malicious clients.

On top of PBFTwe introduce the concept of multi-user operations on stored shares/files.
Therefore, each PBFTnode holds a version of the user database including a mapping
of users and shares/files with specific access rights. On each access the user database
is read from and written to the distributed system using the PBFTprotocol in order to
ensure that each PBFTnode stores the same version of the database. Since operations on
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shares/files are sent by external clients, we require those operations also to be authentic
besides traditional security mechanisms [HKL16] (e.g., username and password).

We further support secure deletion of old (where old is subject to definition, e.g, TTL)
objects by a majority vote protocol. It requires more than 2t+ 1 deletion messages with
the same list of objects in order to perform the requested deletion.

5.3 Architecture and Design of Software Library

BFT-JS

RESTful

Application Interface 

PBFT Core

Storage Interface(s)

Applications

Peer-To-Peer Overlay of 
BFT Nodes

PUT, GET, POST, 
DELETE

Response

Write, Read, 
List, Delete

Data, Index list

File/DB Access

preprepare, 
prepare, commitUser Management

Write, Read

Data

Figure 11: Architecure of the BFT Module.

Figure 11 depicts the architecture of the BFT module. The BFT module is implemented
using the platform independent framework Node.js [Nod17]. Node.js provides an asyn-
chronous event driven JavaScript runtime environment and, therefore, is very well suited
for developing scalable network applications. The Application Interface provides a REST-
ful API for applications (cf. Figure 11), a separate interface definition is provided using
swagger.io. The BFT module provides a secure and fault tolerant storage service (by means
of [LHS15]) and can be easily accessed by any application using the provided RESTful
API. If enabled, the BFT module support multi-user support and each of the operations
on the distributed storage has to be authentic and accompanied by valid credentials (e.g.,
username and password). The User Management extends the RESTful API by means of
user specific options. The interested reader is referred to the interface definition provided
in the first open source release of this component in the Archistar software framework
repository at https://github.com/archistar. The BFT core implements the PBFT (as de-
scribed in [CL99]) protocol. It is decoupled from the actual storage and uses the underlying
Storage Interface for reading and writing to the local copy of the distributed data.

Mediator Module
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::ReplicationThread

~msgToReplicate: Message
~Action: byte

+ReplicationThread(Message msg, byte Action): ctor
+run(): void

::HeartBeatThread

~ClientSocket: Socket
~is: DataInputStream

+HeartBeatThread(Socket ClientSocket): ctor
+run(): void

::ServerHandlerThread

~running = true: boolean
~srvSocket: ServerSocket

+run(): void
+setRunning(boolean val): void
+closeSocket(): void

::HeartBeatWatchdog

+WATCHDOG_INTERVAL = 1000: long
~WatchDogAlive: boolean
~TimeoutThreshold: long

+HeartBeatWatchdog(long timeout_threshold): ctor
+run(): void

::HeartBeatMain

~run: boolean
~port :  int
~srvSocket: ServerSocket

+HeartBeatMain(int port, long timeoutThreshold): ctor
+run(): void

::ServerThread

~MAXPACKET_SIZE = 65536: int
~ClientSocket: Socket
~is: InputStream
~os: OutputStream

+ServerThread(Socket ConnectionSocket): ctor
+run(): void

::MessageType

+HeartBeat = 0x0F: byte
+ClientData = 0x0A: byte
+Data = 0x0B: byte
+RequestIndex = 0x0C: byte
+RequestClientList = 0x09: byte
+InsertData = 0x08: byte
+RemoveData = 0x07: byte
+UpdateData = 0x06: byte

::Server

+HEARTBEAT_PORT = 9889: int
+SERVER_PORT = 6666: int
+CLIENT_PORT = 7666: int
~Clients = new ConcurrentHashMap<Integer, Client>(): ConcurrentHashMap<Integer, Client>
~Index = Collections.synchronizedList(new ArrayList<String>()): List<String>

+main(String[] args): void
+getClientByIPAddress(String IPAddress): Client
+updateHeartBeat(String IPAddress): void
+sendTo(Client cl, byte[] data): boolean

::Client

-port: int
-IPAddress: String
-PublicKey: byte[]
-timeout: long
~initialized: boolean

+Client(): ctor
+Client(String addr, byte[] key): ctor
+getPort(): int
+setPort(int port): void
+getIPAddress(): String
+setIPAddress(String IPAddress): void
+getPublicKey(): byte[]
+setPublicKey(byte[] PublicKey): void
+getTimeout(): long
+setTimeout(long timeout): void
+getInitialized(): boolean
+setInitialized(boolean init): void

::Message

-type: int
~IPAddress: String
~rawInput:  byte[]
~data:  byte[ ]
~key:  byte[ ]
#hexArray = "0123456789ABCDEF".toCharArray(): char[]

+Message(byte[] rawinput): ctor
-parseMessage(byte[] input): void
+isHeartBeat(): boolean
+setIPAddress(String addr): void
+isClientData(): boolean
+getIPAddress(): String
+getKey(): byte[]
+isRemoveData(): boolean
+isInsertData(): boolean
+isUpdateData(): boolean
+isRequestIndex(): boolean
+isRequestClientList(): boolean
+bytesToString(byte[] bytes): String
+bytesToHex(byte[] bytes): String

Figure 12: Classes of the Mediator module.

The mediator module is responsible for maintaining the Peer-to-Peer Overlay consisting
of PBFT nodes and for replicating newly inserted data items to all available PBFT nodes.
If enabled, the Mediator will generate secret shares of the provided data item depending
on the number of PBFT nodes available and the replication factor. In order to maintain
an up-to-date list of PBFT nodes, each PBFT node has to send a heartbeat within a
certain time interval to the Mediator (otherwise the node will be considered as offline).
Newly received data items will be split into n-shares according to Section 4 and will be
distributed to all available PBFT nodes.

Figure 12 depicts the classes of the Mediator module. The Server class denotes the main
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class responsible for setting up the listeners for the heartbeat server (depicted by the
HeartBeatMain class) and the replication server (depicted by the ServerHandlerThread
class). For each arriving client/peer ServerHandlerThread class spawns a new thread using
the ServerThread class which processes the message sent by the client/peer. Clients/peers
are represented by the Client class. BFT nodes that want to enter the system have to
provide their public keys for verification purpose. The server holds a list of all BFT nodes
available in the system including their public keys. Requests or Messages are pre-processed
using the Message class which provides functions for identifying and parsing received
messages according to their type (cf. MessageType class). If clients/peers want to write or
update data in the system, the ServerThread spawns a thread using the ReplicationThread
class which is responsible for creating secret shares (if enabled using a specified sharing
method e.g., Shamir Secret Sharing) and/or distributing the data/shares to the available
PBFT nodes. Furthermore, BFT nodes have to send a heartbeat for maintaining an up-
to-date list of available BFT nodes. Each time a heartbeat is received a new thread is
spawned using the HeartBeatThread class handling the notification from a specific BFT
node. In order to detect out-dated/offline BFT nodes, a watchdog is running provided by
the HeartBeatWatchdog class.
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6 Additional Functionalities

In this section we describe how additional features can be achieved when building dis-
tributed cloud systems on the basis of the SECOSTOR tool. We explain and reference
important protocols, which can be realized easily by using the tool libraries, especially
the functionalities of the secret sharing module. In particular, remote data checking, the
proposed batch verifiable secret sharing and private information retrieval are fully sup-
ported by the secret sharing library. However, implementation of the protocols require
active components at the servers to execute the remote part of the protocol. This is no
problem when the BFT engine is also used, but can be an issue for archiving use cases
where typically only passive cloud storage services are used, e.g., as in the Archistar S3
gateway application shown in section 9. Nevertheless, because efficient means to check
the consistency and retrievability of remotely stored data is of paramount interest a dedi-
cated verfier component have been introduced in the basic SECOSTOR model of section 2
which is among other tasks responsible for triggering auditing procedures by challenging
the servers holding the data, e.g., by running the verify algorithm of the presented remote
data checking algorithm.

6.1 Remote Data Checking

The idea of remote data checking is very interesting, especially for IT outsourcing scenarios
like cloud computing. It enables a party to check the retrievability of remotely stored data
in an efficient way, i.e., without downloading all data. Additionally, if the auditor in such
a system is not able to learn anything about the data he is checking, they system is also
ideally suited for outsourcing the auditing to a third party, which is what we aimed at
with our system.

Because efficient consistency checking for outsourced data if of paramount interest, remote
data checking is and integral part of the SECTOR component. It is exactly the respon-
sibility of the Verifier component from the model presented in section 2 to assure the
retrievability of stored data and monitor the overall status of the servers. The servers on
the other side are also the Provers in the audit protocols and are about to convince the au-
ditor about the client data they are holding. For the SECOSTOR tool we developed a very
simple auditing procedure which is exploiting the redundancy of the system [DKLT16]. It
is extremely efficient and introduces only minimal computational burdens on the server
as well as minimum network communication, independent of the size of the data to be
checked. Furthermore, it only requires access to basic Share and Rec of the SECOSTOR
secret sharing library. This scheme was developed and proofed secure in WP4, for the tool
specification we are just presenting the algorithms to be implemented.

In fact, the scheme is based on arbitrary additively homomorphic threshold secret sharing
scheme, which we will instantiate with Shamir’s scheme [Sha79] for clarity of presentation.
By exploiting the assumptions required for a meaningful secret sharing based storage
system, a completely keyless system is achieved. Furthermore, the system does not require
any pre-processing of messages. Therefore, our auditing procedure can be applied directly
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to any data that has already been stored using Shamir’s scheme, as no precomputation is
required. The protocol is also information-theoretically hiding and allows for efficient batch
audits across different dealers, does not require any storage overhead, supports proactivity,
and is backward compatible with existing solutions. This is achieved by leveraging the
non-collusion assumption and built in redundancy of the underlying distributed storage
system to also prove privacy and extractability of the resulting scheme.

Audit Protocol for Single Messages. For better understanding of the protocol we
first explain the basic version for single data words and extend it later to larger batches.
The parties jointly compute a distributed random value, i.e., each party obtains a share of
the randomness used to blind the shares of the message by simply adding it. If all those
sums are consistent, the auditor accepts the audit, otherwise it rejects.

Because the system is fully key-less, the dealer does not need to store any information
whatsoever, which relieves him from any complex key management issues when accessing
the data from different devices. On a high level, our protocol actually proves that all shares
held by the different servers have a valid (degree-t) interpolation polynomial, i.e., that
the shares are consistent. Consistency with the originally shared message—and therefore
integrity of the shares—then follows from the assumption that the majority of nodes is
honest, and thus their shares are consistent with the original message.

Setup(1λ, n): On input the security parameter λ and the number of servers n, this
algorithm outputs the system parameters:

spar = (q, t, n, (PS1, . . . , PSn)) .

More precisely, these are: a prime number q > n defining the field Fq, an integer t ≤ n−1
2

defining the minimum amount of shares required to reconstruct the secret, and unique
identifiers of n storage servers PS1, . . . , PSn.

KGen(spar): On input the system parameters spar, this algorithm outputs a key pair
(skD, pkD) for the dealer. The key pair is computed as follows:

(skD, pkD) = (ε, ε) .

Store(M, spar, skD): On input a message M ∈ Fq, the system parameters spar, and the
dealer’s secret key skD, this algorithm outputs a share σi to be sent to server PSi for
i = 1, . . . , n. The shares σ1, . . . , σn are computed as follows:

(σ1, . . . , σn)
$← ShamirShare(M, q, t, n) ,

where ShamirShare is Shamir’s secret sharing algorithm. Note that each PSi receives
the corresponding σi over a secure channel.

Reconstruct(spar, skD, {(i, σi)}i∈I): On input the system parameters spar, the dealer’s
secret key skD, and a set of shares {(i, σi)}i∈I), this algorithm outputs ⊥ if |I| < t+ 1.
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Otherwise, it checks whether there exists a unique interpolation polynomial f(x) of
degree t such that f(i) = σi for all i ∈ I. If this is the case, it outputs M ′ = f(0);
otherwise it outputs ⊥.

Verify(spar,M, skD, {σi}ni=1): On input the system parameters spar, a message M ∈ Fq,
the dealer’s secret key skD, and a full set of shares {σi}ni=1, this algorithm outputs
accept, if and only if:

M
?
= Reconstruct(spar, skD, {(i, σi)}ni=1) .

〈PA.Audit(spar, pkD); {PSi.Audit(spar, pkD, σi)}ni=1〉: This interactive protocol consists
of the following steps.

1. The servers jointly compute a distributed uniformly random value in Fq. That is, at
the end of this interaction, every server has a share ρi of a Shamir-shared random
value r with threshold t.

2. Next, the auditor broadcasts a challenge value c
$← Fq to the servers.

3. Each server computes si = cσi + ρi, which it returns to the auditor.
4. Finally, the auditor outputs accept if and only if the provided si are all consistent,

i.e., if:
Reconstruct(spar, skD, {(i, si)}ni=1) 6= ⊥ .

Batch-Auditing of Stored Messages. The main drawback of the basic protocol spec-
ified above is that it requires a fresh distributed random number to be computed for each
message to be audited. We therefore show how to reduce these costs to a practically
negligible amount if a large number of data blocks are audited at the same time. This is
particularly interesting in our setting, where no pre-processing is necessary. Namely, it
is even possible to simultaneously audit a large batch of message across different dealers.
That is, the auditor can audit the storage solution of a company as a whole, and does not
need to run this audit individually per employee, as different employees do not need to
use different private keys in the Store phase. The only requirement is that all messages to
be batch-audited have been shared for the same system parameters spar, i.e., using the
same threshold t and the same n servers.

Assume now that each message M1, . . . ,M` has been distributed and stored according to
Section 6.1, resulting in shares σ1,i, . . . , σ`,i on each server PSi, i = 1, . . . , n. We then
have:

〈PA.Audit(spar, pkD); {PSi.Audit(spar, pkD, {σj,i}`j=1)}ni=1〉: The protocol works just as
in the basic case, except that in Step 3 each server computes its response as:

si =
∑̀
j=1

cjσj,i + ρi .

That is, the response is computed as a polynomial hash of the shares stored by the server.
It can now be shown that for every constant `, the resulting protocol is a t-extractable
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system with retrievability error (`−1)/q. The proof is similar to Σm-protocols [BKLP15].
First, rewinding allows one to extract sufficiently many transcripts and the second step
then essentially corresponds to solving a linear system of equations.

The communication complexity is exactly the same as for the basic protocol, and in par-
ticular is independent of the batch size `. The computational complexity in the batch
setting consists of the joint computation of a single distributed random value, computing
a sum for each server, and calling Verify once on the auditor’s side.

Generation of a Random Value. In Step 1, we use a subroutine for jointly computing
a Shamir shared, uniformly random value in Fq. That is, by the end of the protocol, every
PSi should have a share of a uniformly random value. Besides completeness, we require
the protocol to be private. That is, even if up to t servers behave maliciously, they must
not be able to learn anything about the shared randomness. In particular, they must not
be able to bias the resulting value in any sense.

This building block could trivially be instantiated by letting all servers draw a fresh random
secret ri which is shared using ShamirShare(ri, q, t, n). The resulting shares are sent to the
corresponding servers. At the end, each server adds all its shares. The resulting shared
secret is clearly uniformly random as long as there is at least one honest server in the
system. More advanced protocols have been proposed in the literature, and can be found,
e.g., in [FMY98].

Alternatively, a pool of random values can also be added by clients, which is sometimes
more practical than running a distributed protocol. Particularly in situations, where
application designers want to avoid server side active components having to talk to each
other using the trusted client to generate a pool of shared randomness seems very practical.

Increased Efficiency through Spot-Checking. The computational complexity on the
server side can further be reduced by using spot checking techniques. For instance, the
auditor could define a random sequence of shares that he wants to audit, and only these
shares are used for computing the responses si. For instance, if for a 10′000 blocks file
the auditor wants to ensure that with 99% probability no server deleted more than 1%
of its shares, spot-checking 460 blocks would be sufficient, cf. Ateniese et al. [ABC+07].
Applying an error-correcting code to the data before storing it on the servers could then
be used to cope with this potential 1%-loss of data.

Identifying Malicious Servers Both, the basic and the batch version of our auditing
protocol, so far required that n ≥ 2t+ 1, i.e., that the majority of nodes behaves honestly.
In this setting it is possible for the auditor to detect inconsistencies among the servers.
However, it is not possible to identify which shares caused the inconsistency, and thus it
is also not possible to blame malicious storage servers.

This feature can be introduced whenever n ≥ 3t+ 1. Using standard results from coding
theory, it is then possible to compute the correct reconstructed value in Step 4, and to
identify the inconsistent shares, e.g., using the Berlekamp-Welch algorithm [WB83].

Additionally, when robust modes of secret sharing are used this feature can be even used
up to n ≥ 2t + 1. In general, we recommend the use of robust secret sharing also for
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computational efficiency, because error decoding is much slower than erasure decoding.
This is not a problem for the auditing procedure, because only on block has to be recovered,
but it is an issue for regular client access to data, which also has to apply error correction
for robustness reasons.

Computationally Private Secret Sharing. The protocols presented so far are designed
specifically for Shamir’s secret sharing scheme. However, in practice, often its computa-
tional equivalent, proposed by Krawczyk [Kra93b], is used. While this scheme only gives
computational security guarantees, its storage overhead is asymptotically optimal with
respect to the failure safety of storage nodes: the multiplicative overhead for storing a
single block is only n

n−t , if only t+ 1 servers are required for reconstruction.

The main idea there is the following: first, all message blocks are encrypted using a
symmetric cipher under a fresh key k. Then, k is shared using Shamir’s scheme. The
ciphertexts are shared similar to Shamir’s scheme: instead of only embedding one message
block per polynomial into the constant term, all coefficients of the polynomial are cipher-
texts. This yields a factor t + 1 improvement compared to the information-theoretically
secure version of Shamir. For details, we refer to [Kra93b].

We now note that our auditing protocol can be used directly to also audit systems that
are based on Krawczyk’s protocol. Namely, one simply runs two instances of the protocol:
The first instance is used to guarantee that the secret key k is still stored consistently
across the n storage nodes. The second instance is then executed on the data blocks.
Interestingly, while Krawczyk’s scheme is only computationally private towards the storage
nodes, this auditing protocol still provides information-theoretic privacy against the third
party auditor. This is because of the uniformly random blinding factors ρi that are added
by the storage nodes before sending their responses to the auditor.

6.2 Protection from Malicious Clients

Additionally to the protection from malicious server, it is sometimes also interesting to
protect from malicious clients. This can be especially true for mobile or web based clients
which often run in untrusted environments. To solve this problem, we recommend an to
use an efficient and unconditionally private instantiation of a batch verifiable secret sharing
scheme — (n,m, t)-BVSS — which we developed particularly addressing dispersed storage
applications [KLS17].

In the following, we let p be a prime or a prime power and define the message space of
our BVSS scheme asM := Fp. Furthermore, we use an interactive randomness generation
protocol (RPar,RndBVSS) as a building block. Informally, randomness generation protocol,
executed among the n servers, has to guarantee that all honest servers and the dealer
receive the same uniformly random output from Fp, even if up to t of the servers behaved
maliciously. This is similar to the auditing procedure from section 6.1 and the very same
can also be used here.

38 of 67



Design of the SECOSTOR tool

Perfect (n,m, t)-BVSS for n ≥ 3t+ 1. This instantiation works for all n ≥ 3t+ 1 and
is perfect in the sense that it only has only a constant additive storage overhead compared
to plain Shamir secret sharing. (The scheme is a variant of the BVSS scheme presented
in [BGR96].) The algorithms and protocols of our (n,m, t)-BVSS scheme are defined as
follows:

Parameter generation. SPar(1λ) obtains pp′ ← CPar(1λ) as well as pp′′ ← RPar(1λ, n, t, p),
and outputs public parameters pp := (pp′, pp′′).

Sharing phase. The sharing phase consists of the following two rounds plus the round(s)
needed in the joint randomness generation protocol:

(a) The dealer D, on input pp and (M1, . . . ,Mm) ∈ Zmp , chooses m + 1 degree-t
polynomials

fj(x) = aj,tx
t + · · ·+ aj,1x+Mj

and r(x) = btx
t + · · ·+ b0

with (uniform) coefficents aj,v, bv, b0 ← Zp, for all v ∈ [t] and all j ∈ [m].
Further, the dealer D sends shares ((fj(i))j∈[m], r(i)) to each server PSi, for all
i ∈ [n].

(b) Once every server PSi received ((f̂j,i)j∈[m], r̂i) from the dealerD, the servers and
the dealer engage in an execution of the joint randomness generation protocol.
Let w be the output of RndBVSS(1λ, n, t, p). (Note that after this step, by
definition of the building block, it is guaranteed that all honest PSi and D
hold the same uniformly random value w.)

(c) Next, D computes Cv :=
∑m

j=1 aj,vw
j+bv, for all v ∈ [t]∪{0}, where aj,0 := Mj ,

and broadcasts (Cv)v∈[t]∪{0}. After the broadcast, D outputs ε.

(d) Upon having received Ĉ0, . . . , Ĉt, each server PSi verifies the consistency of its
shares by validating that

Ĉ0 + Ĉ1i+ · · ·+ Ĉti
t ?

=
m∑
j=1

f̂j,iw
j + r̂i (1)

holds. (Note that each PSi has received the values ((f̂j,i)j∈[m] = fj(i)j∈[m], r̂i =
r(i)) as described in step (b).) If the Eq. (1) holds, then PSi outputs ~si :=
(f̂j,i)j∈[m]; otherwise, it terminates the protocol.

Reconstruction phase. The reconstruction procedure is only one-round. Concretely,
each server first broadcasts its shares to all other servers. Now, on input (~s1, . . . , ~sn),
Rec first verifies each ~si by using a Berlekamp-Welch decoder [WB83]. If less than
2t + 1 values (~si)i∈[n] are valid decodings, Rec outputs ⊥. Otherwise, for each j ∈
[m], it takes the respective parts of the valid shares and computes the degree-t
interpolation polynomial f ′j , and outputs the messages M ′j := f ′j(0), for all j′ ∈ [m].

Looking at our protocol specification, it can be seen that the computational overhead on
the server side is independent of the batch size, except for the computation of the sum in
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Eq. (1). However, in practice, these costs are negligible, in particular compared to the
evaluation of m equations of the same form in the direct generalization of existing VSS
schemes.

6.3 Reverting to a Consistent State

Depending on the frequency how often a specific server fails in the audit mechanism, one
might choose to either replace it, or to revert it to a consistent state again. In the following
we recap a protocol based on the enrollment protocol by Nojoumian et al. in [NSG10],
which allows one to recompute lost shares for a specific server.

Assume therefore that storage server PSj has been identified to be inconsistent with the
other servers, and the auditor has sent a message requesting a recomputation step for this
server to the system. Receiving this message PSj returns to the last state that has been
accepted by the auditor and requests the missing shares from a set of storage servers that
were verified positively.

The basic idea is to recompute a missing share σj for storage server PSj by re-computing
f(j) in distributed fashion. Since the Lagrange interpolation is used for this computation
only k storage servers are needed. The auditor can be in charge of selecting them. Assume
it selected subset {PSi}i∈I . Then, the following steps are performed:

1. Each storage server PSi, for i ∈ I, computes its Lagrange interpolation constant
γi =

∏
1≤l≤k,i6=l

j−l
i−l . Then, it multiplies γi by its share σi and, randomly, splits the

result into k portions, such that γi · σi = σ1,i + . . .+ σk,i. Finally, it sends value σl,i
to storage server PSl using a private channel.

2. Each storage server PSi, for i ∈ I, collects all values σi,l received from the storage
servers PSl, where l ∈ I, and computes σi =

∑
l∈I σi,l. Then, it sends σi to storage

server PSj through a private channel.
3. Storage server PSj computes its share σj by adding all received values, i.e σj =∑

i∈I σi.

6.4 Private Information Retrieval

In this section we discuss a technique that go beyond data privacy (i.e., the confidentiality
of outsourced data). When outsourcing data to the cloud, besides the content of the
outsourced data, there are other privacy relevant information that we subsume under the
term access privacy. Protecting access privacy is thereby comparable to measures that are
taken to protect communication networks from various types of traffic analysis [Ray01].
Namely, in communication networks, even if content data is encrypted, without additional
measures2 other sensitive and potentially privacy-invasive information may be revealed to
an adversary. For instance, the identities of sender and receiver, the message size as well
as time and frequency of communication. It is clear that in several scenarios, revealing
any of these information may already be problematic, even if the content data is unknown.

2Such as using anonymous communication networks as Tor [DMS04].
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Such side channels do, however, also exist in storage systems. For instance, a cloud storage
provider can learn who accesses data or who has access to which data, e.g., by inspecting
authentication information as well as access control lists. Moreover, the cloud provider
can learn which data is accessed, how often, and what action a client is taking or can
potentially take, e.g., read and/or write access to the data. Finally, cloud providers also
learn how much data is stored and from where a client is accessing data. In the cloud
computing setting such information can be confidential business information [CPK10].
Cloud providers may use these side channels to learn the access history, which reveals
user’s habits and privileges. The fact that there exist reads to the same file from different
users may indicate common interest or a collaborative relationship and the access frequency
of files may also reveal individual and enterprise related interests respectively.

Subsequently, we will focus mainly on the question of hiding which data is accessed, how
often, and what action a client is performing. In part we will also deal with the question
who accesses data or who has access to which data.

Private information retrieval (PIR) [CGKS95] is an approach, which allows clients to query
data items from a server without revealing to the server which item is retrieved. For now,
let x be a bitstring of length n held by some server(s). A user wants to query the i-th bit
xi, for 1 ≤ i ≤ n, from the server(s), without disclosing any information about i to the
server(s). In this traditional setting, the database is modelled as a string of bits, but the
generalization to a more abstract database is quite straightforward. Augmenting queries
to larger strings, for instance, can be trivially obtained by running many PIR instance in
parallel. This, however, will rapidly become too expensive. Thus, for a practical setting
it is interesting to design protocols which allow to efficiently query larger strings. In a
setting where one wants to obliviously retrieve (blocks of) files in a block oriented storage
setting, such a generalized approach seems more suitable.

PIR approaches can be generally classified according to the privacy guarantees for the
clients:

Computational PIR (cPIR): These schemes provide computational privacy guaran-
tees to the users, i.e., privacy against computationally bounded server(s) and de-
pends on some intractability assumption(s).

Information-theoretic PIR (itPIR): These schemes provide information-theoretic pri-
vacy guarantees to the users, i.e., privacy even against computationally unbounded
server(s).

Furthermore, one can classify PIR schemes according to whether the data is hosted by a
single server or multiple non-communicating servers, each of which hosts an identical copy
of the entire data.

Single-Server PIR: The entire database x is hosted by a single server and thus all
queries are issued to this single server.
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Multi-Server PIR: The entire database x is replicated to ` > 1 servers and every server
holds an entire copy of x. The queries are issued to k ≤ ` of the servers simultane-
ously.

It is not hard to verify that single-server PIR with information-theoretic privacy and
sublinear communication cannot exist. It can also be shown that server side computation
is always Ω(n), because each response to a query must necessarily involve all bits of the
database of size n. Otherwise, the server(s) would learn that the remaining bits are not
of interest to the user.

In general, multi-server PIR are of more practical relevance and also fit the idea of the
SECOSTOR tool of a distributed storage system. Nevertheless, an important aspect in
PRISMACLOUD is to protect from provider side data leakage and requires the confiden-
tiality of data protected for insider attacks at cloud providers. Luckily, as we will see
later, the most efficient and robust methods found in literature not only support PIR
for replicated data but also for secret shared data. The protocols recommended in the
following are compatible with both types of secret shared data, i.e., perfectly secure and
computationally secure ones, and can therefore be easily added on top of the proposed
storage solution.

For SECOSTOR we recommend to use the scheme proposed by Goldberg [Gol07] yielding
a t-private v-Byzantine-robust k-out-of-` PIR. In the following we are quickly reviewing
the scheme and discuss some implications for usage in the SECOSTOR framework.

t-private v-Byzantine-robust k-out-of-` PIR. In these PIR schemes, in addition to
the above properties the client should be able to reconstruct the correct query result even
if v out of the k servers who are required to respond to a query are byzantine, i.e., send
malformed or incorrect answers.

Goldberg [Gol07] presents an approach that yields a t-private v-Byzantine-robust k-out-of-
` PIR. This means that the scheme involves ` replicated versions of the database, provides
query privacy if up to t servers collude and for reconstructing the query result it is sufficient
that at least k servers respond, from which at most v are allowed to respond byzantine.

As mentioned, Goldberg’s PIR scheme employs Shamir’s secret sharing to add robustness.
The database x is treated as a r × s matrix ~X holding r data items of size b and the
database is fully replicated to all ` servers. Every data item is divided into words of size
w and every data item consists of s = b/w words, whereas every word xij represents an
element of a suitably large finite field F. Consequently, the database can be considered to
be the matrix

~X =


x11 x12 . . . x1s
x21 x22 . . . x2s

...
...

. . .
...

xr1 xr2 . . . xrs

 .

Assume a client wants to obliviously query the q’th data item in ~X, i.e., the q’th row vector
~xq = (xq1, . . . , xqs). Therefore, he takes the respective standard basis vector ~eq. To conceal
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the desired index q to the servers, ~eq is split into k vectors of shares s1, . . . , sk (for the ease
of presentation, let us assume that we send the query to servers with index 1, . . . , k and
we do not send it to a larger number of servers as it would be the case when we assume
that servers might fail responding). Each of these k share-vectors contains r elements. In
order to compute these share-vectors, the client chooses r random polynomials p1, . . . , pr
over F of degree t, whereas the constant term of pi is the Kronecker delta δiq, i.e., is 1 if
i = q and 0 otherwise. Then the shares are computed as ~sj = (p1(j), . . . , pr(j)) and the
query for server j is ~sj . Every server computes the response vector containing s elements

as the matrix-vector product ~rj = ~sj · ~X. Finally, the client computes the desired data
item xq from all his response vectors by using s instances of Lagrange interpolation on
inputs (r1,i, . . . , rk,i) for 1 ≤ i ≤ s (note that only t+1 values are necessary per invocation
of the Lagrange interpolation. However, for the ease of presentation we take all k values).

The v-Byzantine-robust feature of this PIR scheme is achieved via list-decoding (which
we will not discuss here) and can simply be dropped if assuming non-byzantine servers.
The byzantine robustness for Goldberg’s PIR scheme was recently further improved in
[DGH12] and `-computationally privacy can be added by using homomorphic encryption
[Gol07].

In the theoretical setting PIR considers the entire data to be an n-bit string or as above
as a r × s matrix ~M . However, this does not really match requirements in a practical
application. One could split files into adequate words and use padding to provide such a
”matrix interface”. Nevertheless, this may require multiple instances of PIR to retrieve
a single file. Furthermore, in order to not reveal information about the file size from
the number of PIR instances used, one needs to issue the maximum number of queries
required for the largest file for every file (using dummy queries for all remaining blocks).
Nevertheless, there is recent work which adopts Goldberg’s PIR to allow efficiently retrieve
multiple blocks simultaneously [HHG13].
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7 Access Control and Data Sharing

In this section, we elaborate on possible extensions of the SECOSTOR architecture. Al-
though this extensions are not in focus of the PRISMACLOUD project, we believe that
those useful techniques might lead to richer product features in the future. We follow
a modular approach, which means that the extensions can directly be applied to the
current SECOSTOR framework. Furthermore, for the below mentioned techniques (par-
ticularly, for attribute-based encryption described in Section 7.2), implementation libraries
are available. Only for the recently developed PRISMACLOUD research result described
in Section 7.3, no implementation is available yet.

More concretely, we give different access-control and data-sharing mechanisms on top of
secret sharing. In particular, for access control, we describe simple mechanisms based on
plain policy enforcement (where the nodes have to be fully trusted who to give access to)
and based on public-key encryption (where we can significantly relax the trust of the nodes
by relying on computational assumptions). For the setting of data sharing, we sketch light-
weight solutions also in the public-key setting (in addition to cryptographically enforced
access control) and deal with the anonymity of data to be shared.

We describe a relaxed security model in comparison to our established secret-sharing model
to enable efficient non-policy-based access control and light-weight data sharing. Despite
the properties of our secret-sharing model (e.g., rely on the secure channels, no more that
t-out-of-n nodes collude, and unconditional security), we rely on computationally bounded
adversaries for access control and light-weight data sharing which allows us to remove the
restriction to rely on secure channels and colluding nodes. Furthermore, we even can
resist collusion attacks from users pooling their secret keys. We note that the secretly
shared data is still unconditionally private, i.e., long-term secure, solely under the non-
colluding assumption; however, cryptographically enforced access control and secure data
sharing hold against computationally bounded adversaries (which is still a strong security
guarantee).

7.1 Beyond plain access control

Because security of secret-sharing-based storage is based on the non-collusion assumption
(i.e., no more that t-out-of-n unauthorized entities collude and are able to combine the
shares), an explicit access-control mechanism has to be deployed at the storage nodes’ end.
Usually, this is done by the node itself in the following way. A user who wants to access
the share has to show some user-specific credential identifying him/her towards the node.
After successful evaluation of the user’s credential, the user is authorized and access to the
share is granted by the node. Obviously, this approach is sufficient when relying on the
non-collusion assumption and, in particular, rely on the assumption that the node does
not give shares to unauthorized users. However, such approach lacks at least in one aspect.
Since the (plain) access control is enforced on the node itself, the user (that shares some
sensitive data to storage nodes) has to fully rely that the access-control mechanism on the
node is implemented correctly, e.g., in software with role-based techniques such as role-
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based access control (RBAC) or policy-attribute-based techniques such as attribute-based
access control (ABAC).

By cryptographically enforcing access control at the nodes’ end, we are able to “shift”
software-based access control towards the access control mechanism of the cryptographic
algorithms. As a consequence, we are able to remove the assumption that the nodes
are properly and correctly implementing the access control to the user data since this is
inherent on the mathematical level. As shown in the next Section, we leverage a con-
crete and well-established cryptographic primitive, dubbed Attribute-Based Encryption
(ABE) [SW04, GPSW06], to enforce access control at the nodes by the means of cryptog-
raphy.

Interestingly, this allows to remove the non-colluding assumption for the storage nodes
with the trade-off that we only can guarantee secure access control against computa-
tionally bounded. Nevertheless, this adversary model is still strong and very reasonable.
Essentially, when using public-key cryptography, up to date, this is the strongest model
we can achieve. However, we stress that in case of facing computationally unbounded
adversary (that can break public-key cryptography and, hence, the secure access control),
we still fall back to the non-collusion assumption to guarantee the privacy of secret-shared
data in PRISMACLOUD.

7.2 Attribute-based encryption for access control and data sharing

Attribute-Based Encryption (ABE) [SW04, GPSW06] is cryptographic public-key prim-
itive which allows for data confidentiality and attributed-based access control to that
encrypted data via specific policies. Interestingly, encryption and access control are both
done on the cryptographic layer which means that no software-based access control is
needed anymore which is a significant improvement over prior publish solutions. Before
we start of describing ABE, we briefly recap (asymmetric) public-key encryption (PKE).

In contrast to the widely known (symmetric) secret-key encryption (SKE) paradigm, in
PKE, the key material consists of a public and secret part. The idea is to solve the
key distribution problem which is inherent in SKE (and which limits SKE useful only
in pre-shared secret-key scenarios). In PKE, one does not need to share secret keys in
advance. Instead, one distributes the public part of your key material typically to an
widely accessible bulletin board (e.g., key server) while the secret part of the key material
is kept secret. Those public key can be used to encrypt plaintext data to yield a ciphertext
while the secret key can reverse the operation to obtain the plaintext data back.

ABE is an enhanced form of PKE and comes in two forms: key-policy and ciphertext-policy
ABE. In Key-policy ABE (KP-ABE) [GPSW06], secret keys exhibit a policy while the
ciphertext is equipped with attributes. Policies can be “(ait AND scientist) OR ceo” with
attributes “ait”, “scientist”, and “ceo” which losely speaking means that any AIT employee
that is a scientist can decrypt or solely the CEO is capable to receiving the plaintext. A
KP-ABE scheme consists of four randomized algorithms Setup,Enc,KeyGen,Dec:

System setup. The setup algorithm Setup outputs a master secret and public key pair
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(msk,mpk).

Encryption. The encryption algorithm Enc(A,mpk,M) takes as input the attributes set
A, for which the message Mshould be encrypted. The output is a ciphertext CA
which is equipped with the attributes in A.

Key generation. The user-key generation KeyGen(P,msk) takes as input the policy and
outputs a secret key skP that is tailored towards that policy.

Decryption. Decryption Dec(skP , CA) yields the plaintext of the encryption CA using
the secret key skP if the attributes A and the policy P match.

The second ABE form is called Ciphertext-Policy ABE (CP-ABE) [BSW07]. A CP-ABE
scheme consists of four randomized algorithms Setup,Enc,KeyGen,Dec:

System setup. The setup algorithm Setup outputs a master secret and public key pair
(msk,mpk).

Encryption. The encryption algorithm Enc(P,mpk,M) takes as input the policy P , for
which the message Mshould be encrypted. The output is a ciphertext CP associated
with the policy.

Key generation. The user-key generation KeyGen(A,msk) takes as input the attribute
list and outputs a secret key skA that is tailored towards the attributes in A.

Decryption. Decryption Dec(skA, CP ) yields the plaintext of the encryption CP using
the secret key skA if the attributes A and the policy P match.

The ABE schemes even allow for a full collusion of secret keys which means that not even
coalition of secret-key holder can pool their keys to decrypt the ciphertext if no single
secret key is already capable of doing so. Note that this is the key distinguishing feature
of ABE which enable secure data sharing.

Access control is straightforward with CP-ABE. One encrypts sensitive data under some
policy and distributes those ciphertext. Any secret-key holder where the attributes from
her/his secret key match the policy of the ciphertext is able of decrypting those ciphertext
while nobody else can do so. KP-ABE is also possible in the sense that the ciphertexts
are associated with some attributes while the secret keys are limited to some policy.

In terms of SECOSTOR, the scenario would be the following. On top of the secret-shared
data, we would deploy CP-ABE in the sense that the secretly shared data is encrypted
under some policy. Hence, we do not need to rely on the access control of the storage nodes
anymore since the data owner can decide to grant access to by giving appropriate secret
keys under some attributes to delegatees. Thus, any secret-key holder (who is associated
to some attributes) is able to receive SECOSTOR shares if the ciphertext policy and
those attributes match. After receiving all the shares, the usual SECOSTOR procedure
(combining shares via Shamir secret sharing and retrieve the secret) can be performed.
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We suggest to implement CP-ABE from [BSW07] for access control mechanisms in SEC-
OSTOR.

To conclude, we strive for CP-ABE to improve the access-control and data-sharing mech-
anisms in SECOSTOR. Without using enhanced mechanisms, current access control in
SECOSTOR is in the hands of the nodes (solely under the non-collusion assumption and
the assumption that the nodes do not give the shares to non-authorized users). With CP-
ABE, SECOSTOR shares can be encrypted and stored on the nodes without relying on
the access-policy mechanisms of the nodes. The privacy of the shares stays uncondition-
ally secure while the access-control security holds against powerful but computationally
bounded adversaries. The encrypted data can be shared by delivering a tailored secret
key (associated with certain attributes) to potential delegatees.

7.3 A note on lightweight data sharing and revocation

Alongside data sharing, access revocation is a hard to achieve and heavy feature. To have
the ability to revoke access to certain sensitive data — even after having once granted
someone access to it — is very desirable; preferably, in a lightweight way.

As discussed above, revoking access to the shares can be enforced by the use of ABE.
While ABE allows for very expressive policies and, hence, yields a very powerful data-
sharing (and access-control) mechanism for SECOSTOR, we want to give an alternative
lightweight solution if one is willing to restrict expressiveness of the policies. This solu-
tion has advantages over ABE in a data-sharing context allowing for dynamic revocation
although it is not that expressive. While in ABE, at the time of creating a ciphertext one
usually has to know either the policy or the attributes to include, the new solution offers
dynamic addition and revocation of delegatees which means that the number of delegatees
does not have to be known in advance. This allows for very versatile usage within the
setting of SECOSTOR in order to dynamically add and revoke user. Furthermore, once
an ABE decryption key was given out and at some point revoked, the key holder is still
able to decrypt previously unseen but decryptable ciphertexts.

As a solution to that problem, in deliverable D4.3 [SST17], we propose Evolution-Based
Proxy Re-Encryption (e-PRE) and we refer the reader to that deliverable for more details
on the technical side.

To conclude, e-PRE is a lightweigth and dynamic-revocation alternative for ABE and can
be of versatile use in SECOSTOR. A technical report of a e-PRE scheme is available
in [DKL+17].
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Table 1: Comparison of minimal server amount and storage overhead between different
storage schemes. The baseline for the overhead is given as a factor based upon the original
data amount.

Faulty Server Amount Storage Overhead
Servers Replication Secret-Sharing Traditional

Replication
Computational
Secret-
Sharing

Perfect
(ITS)
Secret-
Sharing

f = 1 n = k = 2 k = 2, n = 3 2 1.5 3
f = 2 n = k = 3 k = 3, n = 5 3 1.66 5
f = 3 n = k = 4 k = 4, n = 7 3 1.75 7

8 Availability Model

8.1 Theoretical Secret-Sharing Performance

The performance overhead of the Archistar Proxy system can be measured through latency,
minimal number of needed servers, storage overhead and throughput. Given a storage
system that must be able to cope with f faulty storage locations, traditional cloud storage
systems that provide redundant fault-tolerant storage must distribute the original data
upon (at least) k = f + 1 servers. The storage overhead is thus f + 1.

Erasure-Coding has a similar amount of needed servers, but the storage-overhead per
server is reduced by a factor of k.

With information-theoretical secure secret-sharing there is the additional condition that
collaborating storage providers should not be able to reconstruct the original data: k =
f + 1, n − k > f . If we transform the latter this leads to n = 2f + 1. Table 1 shows
the overhead results for different values of f . It can be seen that while secret-sharing
increases the amount of minimal servers, the overall storage overhead depends upon the
chosen secret-sharing algorithm. When information-theoretical secret-sharing is used, the
overhead is higher than a comparable redundant backup solution. When computational
secure secret-sharing is used, it is lower.

Another important metric for backup systems is their throughput. The achieved (simpli-
fied) throughput is the minimum of the incoming (local) network throughput, the secret-
sharing engine’s throughput as well the achievable outgoing (public) network throughput.
We assume the internal network to be of infinite capacity and that our baseline — a tra-
ditional backup solution that uses simple redundancy — saturates the available outgoing
network bandwidth. If we assume a scenario of f = 1, i.e., the user wants at least min-
imal safety from redundancy, then the impact upon throughput should be the ratio of
secret-sharing overhead divided by the traditional overhead. When using the estimated
overhead from Table 1, it can be seen that information-theoretical secure secret-sharing
would decrease the throughput, while computational secure secret-sharing would actually
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improve it. The throughput of the used secret-sharing engine thus becomes the limiting
factor. As a reference, Table 3 shows the measured performance of our secret-sharing
library upon multiple platforms.

8.2 Availability Model

In reliability theory an n-component system that works if and only if at least k of the n
components work is called a k-out-of-n:G system. The presented storage system is exactly
implementing such a structure in a multi-cloud setting which lets us directly apply some
results from reliability theory in our availability analysis.

In particular, the reliability R(k, n) of a k-out-of-n:G system with i.i.d. components, i.e.,
components which are independent of each other, is equal to the probability that the
number of working components is greater than or equal to k. In particular the reliability
is calculated as shown in equation 2, whereby p means the probability of an individual
component still working after a given amount of time. Furthermore, when we talk about
availability, the more interesting notion for us, p means the probability finding an individ-
ual component working at a given point in time (including maintenance and repair). The
value q is given by q = 1− p.

R(k, n) =

n∑
i=k

(
n

i

)
piqn−1 (2)

The k-out-of-n is a generic model for adding fault tolerance to systems by increasing
redundancy, which is exactly what we are doing with secret sharing in the Archistar
system, if we leave the security aspects aside for this treatment.

If we compare the different settings presented in the previous section with the reliability
model we get the following results. For the case of data replication we have k = 1,
which leads to the analogous of a parallel system in the reliability model and R(1, n) =
1−

∏n
i=1(1− pi) = 1− (1− p)n. For the cases of perfectly secure (ITS) secret sharing and

computational secret sharing the reliability parameters can flexibly be adjusted through
encoding between 1 ≤ k ≤ n, which leads to a non trivial k-out-of-n system if k is selected
accordingly (k > 1 and k < n). However, if the redundancy is fully removed for security
reasons (k = n), the systems becomes a simple series system with R(n, n) =

∏n
i=1 pi = pn.

Thus, from a reliability standpoint, both secret sharing variants provide the same level of
reliability, although providing different levels of security and storage overhead.

Now, if we use the previous treatment to model the availability of our solution, the basic
characteristics can be directly applied. As we show here, we can also use this approach
to design our system based on availability criteria we have to fulfill for the data stored.
Enabling this SLA tailoring via multi-cloud configurations is very attractive, because the
standard cloud storage market provides only limited flexibility in the configuration of ser-
vice level agreements (SLA). In many cases main design criteria like availability goals are
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Table 2: Number of leading nines for system reliability R(k, n) for given n and k and a
individual storage node reliability of p = 0.98, which is a typical value taken from cloud
storage provider SLA.

n k
1 2 3 4 5 6 7 8 9 10 11 12

3 5 3 1 0 - - - - - - - -
4 7 5 3 1 0 - - - - - - -
5 8 6 4 2 1 0 - - - - - -
6 10 8 6 4 2 1 0 - - - - -
7 12 9 7 5 4 2 1 0 - - - -
8 14 11 9 7 5 3 2 1 0 - - -
9 15 13 10 8 6 5 3 2 1 0 - -
10 17 14 12 10 8 6 5 3 2 1 0 -
11 19 16 14 11 9 8 6 4 3 2 1 0
12 20 18 15 13 11 9 7 6 4 3 2 1
13 22 19 17 15 12 11 9 7 5 4 3 2
14 24 21 18 16 14 12 10 8 7 5 4 3
15 25 23 20 18 16 14 12 10 8 7 5 4

not even clearly stated in provider SLA3, nor is there any real compensation foreseen in
case of violation, except for some minor service credits. In fact, serving standardized SLAs
to customers is a major feature of cloud computing which helps to enable the elasticity and
self-service capabilities the customers want to have. However, as a downside of this ap-
proach, it is very difficult for customers to find offerings which perfectly fit their particular
needs and almost impossible to negotiate special conditions.

Archistar is trying to solve this problem in a different way, i.e., by letting the customer
design a storage system according their needs and requirements as a fault tolerant compo-
sition of different cloud offerings. In particular, the k-out-of-n paradigm is used to design
systems which can theoretically provide arbitrary high levels of availability. Availabil-
ity classes are typically given as number of leading nines of the availability value, i.e.,
a “three nines” availability means 99.9% which corresponds to a downtime of 8.76h per
year or 43.8min per month. We used this type of availability classes to demonstrate the
theoretical values we can reach in our system with reasonable number of storage nodes.

In table 2 we show the calculated availability classes for different configurations of n and
k, whereby an overall availability of 98% (p = 0.98) is assumed for the individual cloud
storage offerings used to store the data fragments. It is easy to see, that for all typical
requirements configuration parameters exist. The system is giving the cloud customer
much more flexibility and enables him to design his own SLA for a virtual Archistar
storage service with respect to availability, confidentiality and integrity on top of existing
cloud offerings. This can also help to speed up and improve the cloud migration process
in general. Furthermore, if the configurations would be matched against cloud services

3e.g. see Amazon S3 service: https://aws.amazon.com/s3/sla/ (accessed 6/17/2017)
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databases, the best provider offerings can be selected to also get a price optimal solution.
Nevertheless, a more detailed model also considering failure modes like network outages
and data loss would be desirable and is left for future work.
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9 Applications based on the tools

9.1 Archistar Backup Proxy

Storage systems can be classified according to the data access methods they are providing
to their clients. Most storage interfaces fall into one of the following classes: remote file
systems, block storage or key-value stores4. In addition systems can be classified due
to the CAP theorem[GL02]—denoting Consistency, Availability and Partition Tolerance.
The theorem states, that a system can fulfill a maximum of two out of three of those
parameters.

Remote file systems provide hierarchical data storage with high semantics[Sat90]. In case
of cluster file systems parallel write-operations by multiple clients while keeping strong
consistency are commonly supported. This high feature level is bought by complexity.

Block-level storage offers a virtual block device, e.g., a distributed hard-drive. Data rep-
resentation is not files, but fixed-size storage blocks. It is the client’s responsibility to
provide a file system with all inherent complexities on top of the virtual block device.
This reduced feature allows for increased simplicity and thus low latency. In addition the
block-level storage is well suited for data deduplication on the lowest layer. This improves
storage efficiency but has the inherent drawback of reduced data safety due to reduced
redundancy as well as a potential negative confidentiality impact[HPSP10].

Key-Value stores provide functionality akin to non-hierarchical dictionaries[HHLD11].
Similar to block-based storage systems they utilize unique keys for identifying data, in
contrast to block-storage they allow storage of arbitrarily sized values. They focus upon
availability and horizontal scale-out, i.e., sharding, and have become prominent for cloud
applications. The foremost known key-value network protocol is the industry-standard
Amazon S3 protocol which is served over HTTPS.

9.1.1 Architecture

The Archistar Backup Proxy uses secret-sharing to split up archive data—provided by an
existing backup solution—into encrypted shares and then distributes those shares upon
multiple potentially untrusted cloud storage providers. A simplified representation of our
system architecture is shown in Figure 13a, a simplified version of the dataflow is shown
in Figure 13b.

We target the enterprise backup sector, this leads to multiple simplifications for the result-
ing software architecture. Enterprise backup clients typically connect to a single backup
server which used to store the clients’ data upon tape drives but recently have begun to
exchange those tape decks with cheap online cloud storage. Existing Enterprise Backup
Solutions commonly support the Amazon S3 protocol for backend storage. By providing
an emulation of this protocol, the Archistar Backup Proxy becomes a drop-in network

4Please note that we are focusing upon file-based storage systems and are not analyzing structured
storage systems such as relational databases.
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Archistar Backup Proxy

NextCloud Duplicati Backup Server

Backup Client Backup Client

Amazon S3Rackspace S3 OpenStack S3

(a) High-level network system overview.

Backup Software

Cloud Storage Providers

Network Distribution

Secret-Sharing

Plain-Text Archive Data

Encrypted Shares

Encrypted Shares

Archistar Proxy

(b) Example data-flow from backup client.

Figure 13: High-Level network system overview and example data-flow from backup clients
to the cloud storage servers.

component. While this improves the interoperability, the situation is not perfect: not all
backup solutions utilize the same Amazon S3 subset.

The resulting system is inherently single-user: while multiple clients connect to the backup
server, just a single backup server will connect to the Archistar Backup Proxy. While the
backup proxy itself might provide multi-user support to its clients, the overall system is still
a single-client system with the backup proxy being the single storage client. The single-
user nature of the system allows to delegate large parts of the user authentication and
authorization problem to the backup server software. As we target real-world deployments,
we cannot assume active servers with code-execution capabilities. This reduces our server-
side options as many storage systems mandate active servers with communication channels
between them, e.g., PBFT-based solutions[GWGR04], or active servers with user-supplied
code, e.g., fork-consistency based systems.

A high-level benefit of the backup storage sector is its focus upon bandwidth. In contrast,
desktop-level interactive applications are forced to focus upon latency. As we can thus
allow for higher latencies, this enables easy implementation of batching and caching, thus
further improving the achieved bandwidth.

As mentioned, we have chosen the Amazon S3 protocol for client interactions due to its
mass market adaption. We also support the Amazon S3 protocol for interaction with
our backend storage providers but offer additional in-memory and local-storage providers
for testing purposes. The concrete storage driver implementations are abstracted behind
an interface, so supporting other cloud providers or modes of storage is a matter of im-
plementing few very basic methods. Apart from utility functions — for connecting and
disconnecting, returning status information — one only needs to provide methods for stor-
ing, retrieving, and deleting binary objects. As the proxy server keeps its own metadata
within its index, no methods for listing directories or retrieving file stats are needed.

The index itself is a container for file data, i.e., a file’s original name, size, SHA-256
and MD55 hashes, modification date, content type, used secret-sharing algorithm and

5The MD5 hash is needed for compatibility with the Amazon S3 protocol.
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metadata. In addition, file data includes information on where its secret-shared parts
are stored. This is needed, as we store each under a separate identifier to hamper data
analysis. Apart from that, each index can — depending on the versioning configuration
— contain a reference to its predecessor. As each index includes information about all
available files and directories, this allows for implicit versioning of all data. To reduce
storage overhead, the number of stored versions, reaching from zero to infinity, can be
configured through the backup server’s configuration.

Secret-sharing is utilized to distribute the index upon the available storage clouds. It is
therefore only identified by its unique random identifier6; to identify the current index,
a special file with a fixed name is used akin to a super-block in filesystem design. In
order not to have to retrieve the current index on every operation and thus spare round-
trips, it is cached locally. Storage operations that do not manipulate actual file data,
are thus “cheap”. If we assume single-proxy operation, we do not have to check if our
locally cached index and the server-side index are identical. Listing all stored files, or
retrieving the metadata of one specific file, does not entail any backend operations. This
is paramount for performance, as some clients issue a surprisingly high number of such
requests before and after each actual file operation. In addition this allows the backup
server to better cope with the potential high-latency during accessing networked Amazon
S3-compatible storage servers.

9.1.2 Implementation and Evaluation

This section describes findings that were discovered during implementation. In contrast
to the “Architecture”-findings, these findings are more concerned with mechanics and
protocol choices.

S3 Integration Challenges

During implementation of the proxy prototype, we discovered significant negative perfor-
mance interactions between our initial data representation and the Amazon S3 protocol,
leading to decreased performance and scalability.

As mentioned before, S3 is a key/value store with an assumed flat, i.e., non hierarchical,
key space whose internal value structure is orthogonal to the protocol. Sadly, this is not
what clients expect: when dealing with files, instead of a flat name space, one would
probably like to have directories. For handling large files, incremental up- and download
facilities would be useful. S3 provides for this: in the case of directories, this is done
by treating directory names as “common prefixes”. For incremental uploads of large files,
there is a special “Multipart Upload” operation. As for downloading big files, S3 makes use
of byte-wise access through HTTP Range headers7. As our security model assumes that
we only serve (and integrity-check) whole files, this introduces a payoff between security
and performance — either we retrieve, reconstruct, and serve just the requested part of

6Other than regulars files though, all secret-shared parts of the index have the same identifier upon all
used storage providers.

7Specified in RFC 2616 §14.35, current version: RFC 7233.
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the file but are then not able to verify its integrity, or we can retrieve the whole file, check
it, and serve only the requested part. This is further exacerbated by the fact that client
can — via the Range headers — specify arbitrary ranges to be retrieved. The size of
the “chunks” in which the file is retrieved cannot a priori be determined and thus, no
check-sum be pre-calculated. A 150MB file might be retrieved in 2 chunks, or in 16.

This does not only impact performance. Our current prototype implementation is based
on Java byte arrays for incoming data, processing as well as for outgoing data. This
has obvious negative implications for memory usage, but also less obvious implications
for stability. For every l bytes of input, at least n + 1 byte arrays of length l have to
be allocated by the Java virtual machine. In typical use, allocations do not fail, but in
principle, the JVM can throw an OutOfMemoryError at any time — as we have found,
frequently accessing files of moderate size such as 50 Megabyte are sometimes enough to
trigger this condition. This happens exactly when a client sends multiple requests for
different ranges of the same file.

Secret-Sharing Engine Performance

When analyzing the sequential single-thread performance of our data-processing engine,
the typical culprits can be found: finite field multiplication and random number generation.
Speeding up finite field multiplication is an intensively researched subject, but for our
specific purposes of bit fields of width 8, we found the approach of using lookup tables more
than adequate. A high random number generation rate is paramount, because when using
Shamir’s secret-sharing algorithm, for every byte of input, k−1 bytes of randomness must
be generated. The availability of a high-performance hardware random number generator
is thus highly recommended. The single-thread performance of our secret-engine can be
seen in Table 3.

Our current prototype uses a sequential and single-threaded secret-sharing engine. To im-
prove performance we are offering a first version of a parallelized erasure coding algorithm.
We are investigating the potential of splitting up the workload upon multiple CPU cores,
esp., to be better suited for operation on dedicated network hardware which often pro-
vides many low-performance CPU cores. Rabin’s algorithm allows for easy optimization,
as each of the n output shares can be generated on a different core because no synchro-
nization between them is necessary. Shamir’s algorithm depends upon k − 1 generated
random bytes for every byte of input, so a parallel implementation would either have to
pre-generate the extra coefficients, or synchronize their generation across multiple threads.
Preliminary performance numbers for a parallelized Rabin can be seen in Table 4. Please
note, that we are currently parallelizing up to n (maximum number of shares) threads
— in our test-case, the embedded Intel Atom processor would offer more cores than our
maximum number of shares, thus no full utilization of the processor cores is achieved.
There is a slight performance hit when the multi-threaded code is run on a single-core
processor: this is grounded within the initial setup overhead of the multi-threaded code.
To get the best performance, two separate versions of the library (or instantiations within
the library) for single- and multi-core usecases might be advantageous.

The speed-up for Rabin on a quad-core was around the expected factor of four. Krawczyk
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Table 3: Single-Core throughput upon plaintext-data of different secret-sharing algorithms
on different Intel CPUs with n = 4, k = 3, measurements in kilobyte/second. The Intel i5
is a good example of a middle-range Desktop CPU while the Atom C2758 is typical for
an embedded high-range CPU.

CPU Speed Algorithm Split-Up Combine

i5-4690K 3.5GHz Shamir 42533.7 54179.9
C2758 2.4Ghz Shamir 9212.8 10790.3
Exynos A9 1.7GHz Shamir 3400.6 3940.7
ARM A53 1.2Ghz Shamir 1695.1 2034.9

i5-4690K 3.5GHz Rabin 123746.2 129211.4
C2758 2.4Ghz Rabin 28603.4 26056.0
Exynos A9 1.7GHz Rabin 9915.3 10559.4
ARM A53 1.2Ghz Rabin 5102.1 5346.6

i5-4690K 3.5GHz Krawczyk 79534.0 80313.7
C2758 2.4GHz Krawczyk 17754.7 16828.3
Exynos A9 1.7GHz Krawczyk 6626.8 6813.0
ARM A53 1.2Ghz Krawczyk 3591.4 3773.0

Table 4: Preliminary performance (Version a8a344b) with multi-core enabled Rabin Data
Dispersal. As Rabin is also used by Krawczyk, its performance should also improve. Please
note, that currently a maximum number of n threads is used. The tested Atom C2758
board offers 8 cores, so it is not utilized to the maximum of its abilities.

CPU Speed Algorithm Split-Up Combine

i5-4690K 3.5GHz Shamir 53753.3 52378.0
C2758 2.4Ghz Shamir 8192.0 7881.5
Exynos A9 1.7GHz Shamir 6917.8 3932.0
ARM A53 1.2Ghz Shamir 3502.4 2056.9

i5-4690K 3.5GHz Rabin 694237.3 124498.5
C2758 2.4Ghz Rabin 99417.5 26072.6
Exynos A9 1.7GHz Rabin 67590.8 10529.6
ARM A53 1.2Ghz Rabin 40634.9 4395.2

i5-4690K 3.5GHz Krawczyk 167868.9 79844.1
C2758 2.4GHz Krawczyk 32507.9 16862.9
Exynos A9 1.7GHz Krawczyk 16430.0 6949.4
ARM A53 1.2Ghz Krawczyk 9669.5 3765.1

56 of 67



Design of the SECOSTOR tool

Table 5: Impact of Processor Architecture and difference incoming data sizes upon Rabin
throughput. Multi-threaded algorithm used, all Values in kByte per Second.

Data Size Intel Core i5-4570 ARM A9
Split-Up Combine Split-Up Combine

4 kB 117028.6 84553.6 39309.0 9992.7
64 kb 481882.4 121904.8 74744.5 10890.7

128 kb 460224.7 123373.5 76560.7 10922.7
512 kb 630153.8 124121.2 65958.1 10873.4

1024 kb 650158.7 123746.2 107789.5 10870.5
2048 kb 660645.2 124498.5 111304.3 10884.9
4096 kb 620606.1 124878.0 111404.3 10873.4

is a combination of Shamir, Rabin and symmetrical encryption. The secret-sharing key
is shared using Shamir, the original data is encrypted using a traditional symmetric en-
cryption and then shared with Rabin. If the existing symmetric encryption library (Boun-
cyCastle in our case) scales as well as our new parallelized Rabin code, then Krawczyk
should also improve around a factor of 4. As our empirical tests have shown, a factor
of 2 is achieved. This indicates that the existing symmetric encryption engine also has
become a bottleneck with our new code. Future research into alternative cryptographic en-
gine as well as into Java 9 (which improves hardware support for cryptographic directives
prevalent in modern processors) is planned.

Another possibility is to split the input across its length. In that case, the problem
becomes the assembly and ordering of the generated output. Currently, this is feasible
as both input and output buffers are byte arrays. Parallelization can be achieved by
computing indices within those arrays. Alas, as mentioned before, byte arrays are not
a scalable solution. Therefore, we will switch to a stream-based implementation, which
renders this parallelization approach infeasible.

For further optimization, we performed pre-processing of constant factors for common
operations. E.g., when sharing a secret, for every generated output share, all multiplica-
tions are performed with the same factor. We are currently investigating another example
of preprocessing: when reconstructing a secret, a decoder matrix has to be generated
— instead of using generic matrix multiplication we could decompose and simplify the
matrix.

When testing multiple input file sizes, we found that a block size of 4 Kilobyte produced
significantly reduced performance. With larger input sizes, the performance was generally
constant on the Intel Core i5 CPU. On passively cooled embedded devices (ARM as well
as Intel Atom processors) the power- and thermal management prevented the creation
of reproducible performance benchmarks. Future research in to the power consumptions
and thermal impact of differnet algorithms might be needed. An overview of the recorded
throughput values can be seen in Table 5.
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9.2 Archistar Web Based Data Sharing

Clouds

Privacy

Layer

Consistency 

Layer

Storage

Layer

Provider 1 Provider 2 Provider 3 Provider 4

Service 
Boundary

Figure 14: Archistar Web Based Data Sharing Service.

As depicted in Figure 14 our web-based data sharing service consists of two different sites.
Thus, we provide a module that operates on the client or end-user site, providing pri-
vacy and security by generating secret shares which are distribued among the selected
cloud providers (c.f. Figure 14, privacy layer). We further provide a module for the cloud
providers which provides protocols for guaranteeing robustness, availability and consis-
tency among the employed cloud providers (c.f. Figure 14, conistency layer). However,
both modules should not be tightly coupled such that both can be independently used by
third party software. Allowing third parties to provide their own solution for maintaining
high availability or confidentiality.

The modules are implemented using node.js. For further information on the used modules
we refer the interested reader to Section 5 and Sectiond 4. The modeuls provide RESTful
APIs such that they can easily combined with third party software providing either part
(privacy layer or consistency layer).

9.2.1 Preliminary Performance Evluation

In order to conduct a preliminary performance evaluation, we compare the performance,
in terms of time in milliseconds until shares are stored in the cloud and time needed for

58 of 67



Design of the SECOSTOR tool

With PBFT Without PBFT
Upload Donwload

Shares (ms) Total (ms) Reconstruct (ms) Total (ms) Reconstruct (ms) Total (ms)

20 kiB
Upper CI 187.13 1146.92 367.93 397.62 355.64 366.09
Average 144 945 303.8 341.9 280.3 291.7
Lower CI 100.87 743.08 239.67 286.18 204.96 217.31

250 kiB
Upper CI 1014.00 1951.15 1914.38 1956.70 1836.50 1854.75
Average 973 1793.1 1784.9 1815.6 1757.8 1777.9
Lower CI 932 1635.05 1655.42 1674.50 1679.10 1701.05

5 MiB
Upper CI 17938.91 20343.63 36019.98 36048.38 31707.09 31724.95
Average 17597.3 19933.8 33644.1 33669.4 30632.5 30647.1
Lower CI 17255.69 19523.97 31268.22 31290.42 29557.91 29569.25

10 MiB
Upper CI 34937.95 40338.87 69009.32 69194.00 57705.20 57721.21
Average 34077.6 38860 65588.9 65000.2 55702 55718.7
Lower CI 33217.25 37381.13 62168.48 60806.40 53698.80 53716.19

Table 6: Preliminary performance results (95% confidence intervals) for different file sizes
with our cloud storage solution and without.

fetching those stored shares again, of our cloud storage service solution to only using secret
sharing at the end-user’s site and without our BFT solution. Using real cloud services to
deploy and evaluate the performance will introduce uncontrolable influence factors, e.g.,
bandwidth and latency fluctations caused by other network applications or the Internet
Service Provider (ISP). Thus, we decided to use virtual machines on the same host device.
Each virtual machine had the following specification: single core CPU with 2.7 Ghz, 1
GB RAM, 10 GB disc space, running Ubuntu Server 16.04. For the BFT test case, we
instantiated five nodes, three nodes running our BFT solution only, one node for the
mediator module, and one node representing the client. The single node for a client is
important due to the nature of our BFT solution. Since we are using the BFT system to
store secret shares, collecting them upon requrest at a single BFT node would allow to
reveal the secret at this node. For the test case without BFT we used three storage nodes
which represented three different cloud storage service provider. We selected 20 kiB, 250
kiB, 5 MiB, and 10 MiB test files which were subject to secret sharing prior uploading
them to one of the cloud storage solutions. For each pairing of cloud storage solution and
file size we made ten runs.

Table 6 depicts the results of the preliminary evaluation. For small file sizes, i.e., 20 kiB,
there is only a small difference between the cases with PBFT and without PBFT. With
an increase in file size also the difference in downloading increases. However, thinking of
the overhead PBFT introduces even the higher retreival times for 10 MiB are acceptable
compared to not having PBFT in place.
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10 Summary and Outlook

In this report we present the design of the SECOSTOR tool. The tool architecture is
introduced and most important terms are defined. A high level component model was
used to communicate the overall architecture and building blocks as well as major features
to expect from the tool.

After the introduction of the architecture, the two major modules of the tool are intro-
duced, namely the secret sharing module and the BFT module. The secret sharing module
contains a comprehensive set of encoding and decoding algorithms for secret sharing and
information dispersal, all of which are relevant in the storage setting. The module is
implemented as Java library and give developers easy access to most relevant schemes.
An additional JavaScript implementation has also been done to increase the deployment
options and improve exploitation possibilities.

The BFT module implements a robust consistency layer for managing concurrency and
faults in a distributed storage network. The BFT module is able to cope with malicious
behavior and currently resembles the protocols known as PBFT (practical Byzantine fault
tolerance) for replicated plaintext data. The software implementation of the BFT module
was done in JavaScript and leverages modern web technologies, Node.js among others
for maximum portability and flexibility in deployment. The BFT module is also fully
compatible with the secret sharing module to speedup service development.

Additionally to the basic functionality more protocols have been researched and developed.
In particular the report recommends a set of very efficient and easy to implement add-on
protocols for remote data checking, client verification, recovery, and private information
retrieval, which can be easily integrated into applications based on the SECOSTOR tool
libraries.

Another important topic discussed in this report is access control mechanisms. Because
of the security model of secret sharing, i.e. the non-collusion assumption, access control
is extremely important to prevent adversaries from getting enough shares. We therefore,
also discussed favorable combinations with asymmetric cryptography to get best of both
worlds in a mixed (hybrid) system. The proposed cryptographic solutions are currently
not part of the prototype, but existing implementations from other projects can be used
and used together with the SECOSTOR tool. However, future versions of the tool will also
support reasonable combinations of secret sharing and modern asymmetric cryptography.

In the last section we quickly present the services built in Prismacloud based on the
SECOSTOR tool. We do this to demonstrate the usage and flexibility of the tool as
well as to showcase two extreme deployment scenarios. On one hand, we show how a
straightforward solution could look like in form of a trusted gateway. On the other hand,
we demonstrate a complex multi-user multi-cloud deployment with no single point of trust
or failure, which is the most secure and robust one in our current security model based on
non-collusion. Additionally, in this section we also report performance values to give the
reader a glimpse on the achievable throughput of such systems.

The tool can be considered feature complete and ready for integration into the pilot and
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use cases specified during the first phase of the project. The rest of the software activities
on the tool level will focus on support and bug fixing activities to assist in the piloting
activity. Nevertheless, research on possible extensions is still ongoing in the project. For
the last phase of Prismacloud the SECOSTOR tool will be extended on the conceptual
level with more verification protocols and quantum-safe algorithms for long-term security,
i.e., by integrating research results in verifiable computing.
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Boris Rozenberg, and Daniel Slamanig. Towards a New Paradigm for Privacy
and Security in Cloud Services. In Frances Cleary and Massimo Felici, editors,
Cyber Security and Privacy, volume 530 of Communications in Computer and
Information Science, pages 14–25. Springer International Publishing, 2015.

[LSLP16] Thomas Lorünser, Daniel Slamanig, Thomas Länger, and Henrich C Pöhls.
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